Skip to main content
Log in

A study of the biological effects of low-level light

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level light therapy (LLLT), also known as photo biomodulation (PBM), is a type of optical therapy that uses red or near-infrared lasers or light-emitting diodes (LEDs) for medical treatment. The laser wavelengths involved in PBM typically range between 600–700 nm and 780–1100 nm, with power densities ranging between 5 mW/cm2 and 5 W/cm2. PBM is a series of biochemical cascades exhibited by biological tissues after absorbing a certain amount of energy from light. PBM has been widely used in clinical practice in the past 20 years, and numerous clinical trials have demonstrated its biological efficacy. However, the underlying mechanisms have not yet been fully explored. In this paper, we have summarized the research into PBM over the past two decades, to identify the important mechanisms of the biological effects of PBM from the perspective of molecular mechanisms, cellular levels, and tissue changes. We hope our study provide a theoretical basis for future investigations into the underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Abbreviations

LLLT:

Low-level light therapy

PBM:

Photobiomodulation

COX:

Cytochrome C oxidase

ATP:

Adenosine triphosphate

ROS:

Reactive oxygen species

RANKL:

Receptor activator of nuclear factor-κ B ligand

ERK/FOXM1:

Extracellular signal-regulated kinase/forkhead box M1

ERK:

Extracellular regulated protein kinases

MEK:

Methyl ethyl ketone

PGE2:

Prostaglandin E2

CPLA2 :

Cytoplasmic phospholipase A2

SPLA2 :

Human recombinant type

Aβ/YAP/p73:

Amyloid beta-peptide/yeast aspartic protease/tumor protein p73

MMP:

Matrix metalloproteinase

CCI:

Chronic constrictive injury

SVZ:

Subventricular zone

ALP:

Alkaline phosphatase

IGF-1:

Insulin-like growth factor 1

AGA:

Androgentic alopecia

References

  1. Huang Y -Y , Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy - an update. Dose-Response. 2011; 9(4):602–618. [PubMed: 22461763

  2. Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62(8):607–610. https://doi.org/10.1002/iub.359. (PMID: 20681024)

    Article  CAS  PubMed  Google Scholar 

  3. Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol. 2018 Mar;94(2):199–212. doi: https://doi.org/10.1111/php.12864. Epub 2018 Jan 19. PMID: 29164625; PMCID: PMC5844808

  4. Chen AC-H, Arany PR, Huang Y -Y , Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D, Y ull FE, Blackwell TS, Hamblin MR. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One. 2011; 6(7):e22453. [PubMed: 21814580]

  5. Murad F (2005) Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci Rep 24(4–5):453–474

    Google Scholar 

  6. Incerti Parenti S, Checchi L, Fini M, Tschon M (2014) Different doses of low-level laser irradiation modulate the in vitro response of osteoblast-like cells. J Biomed Opt 19(10):108002. https://doi.org/10.1117/1.JBO.19.10.108002. (PMID: 25279541)

    Article  CAS  PubMed  Google Scholar 

  7. Liang J, Liu L, Xing D (2012Oct 1) Photobiomodulation by low-power laser irradiation attenuates Aβ-induced cell apoptosis through the Akt/GSK3β/β-catenin pathway. Free Radic Biol Med 53(7):1459–1467. https://doi.org/10.1016/j.freeradbiomed.2012.08.003. (Epub 2012 Aug 11 PMID: 22917976)

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Zhang Y, Xing D (2010Jul) LPLI inhibits apoptosis upstream of Bax translocation via a GSK-3beta-inactivation mechanism. J Cell Physiol 224(1):218–228. https://doi.org/10.1002/jcp.22123. (PMID: 20333643)

    Article  CAS  PubMed  Google Scholar 

  9. Ling Q, Meng C, Chen Q, Xing D (2014Jan) Activated ERK/FOXM1 pathway by low-power laser irradiation inhibits UVB-induced senescence through down-regulating p21 expression. J Cell Physiol 229(1):108–116. https://doi.org/10.1002/jcp.24425. (PMID: 23804320)

    Article  CAS  PubMed  Google Scholar 

  10. Lim W, Kim J, Kim S, Karna S, Won J, Jeon SM, Kim SY, Choi Y, Choi H, Kim O. Modulation of lipopolysaccharide-induced NF-κB signaling pathway by 635 nm irradiation via heat shock protein 27 in human gingival fibroblast cells. Photochem Photobiol. 2013 Jan-Feb;89(1):199–207. doi: https://doi.org/10.1111/j.1751-1097.2012.01225.x. Epub 2012 Sep 18. PMID: 22892019.

  11. Zhang H, Wu S, Xing D (2012Jan) Inhibition of Aβ(25–35)-induced cell apoptosis by low-power-laser-irradiation (LPLI) through promoting Akt-dependent YAP cytoplasmic translocation. Cell Signal 24(1):224–232. https://doi.org/10.1016/j.cellsig.2011.09.004. (Epub 2011 Sep 14 PMID: 21945154)

    Article  CAS  PubMed  Google Scholar 

  12. Liang HL, Whelan HT, Eells JT, Meng H, Buchmann E, Lerch-Gaggl A, Wong-Riley M (2006May 12) Photobiomodulation partially rescues visual cortical neurons from cyanide-induced apoptosis. Neuroscience 139(2):639–649. https://doi.org/10.1016/j.neuroscience.2005.12.047. (Epub 2006 Feb 7 PMID: 16464535)

    Article  CAS  PubMed  Google Scholar 

  13. Sperandio FF, Simões A, Corrêa L, Aranha AC, Giudice FS, Hamblin MR, Sousa SC. Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair. J Biophotonics. 2015 Oct;8(10):795–803. doi: https://doi.org/10.1002/jbio.201400064. Epub 2014 Nov 20. PMID: 25411997; PMCID: PMC4583360.

  14. Cury V, Moretti AI, Assis L, Bossini P, Crusca Jde S, Neto CB, Fangel R, de Souza HP, Hamblin MR, Parizotto NA. Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. J Photochem Photobiol B. 2013 Aug 5;125:164–70. doi: https://doi.org/10.1016/j.jphotobiol.2013.06.004. Epub 2013 Jun 19. PMID: 23831843; PMCID: PMC3759230.

  15. Tsai WC, Hsu CC, Pang JH, Lin MS, Chen YH, Liang FC. Low-level laser irradiation stimulates tenocyte migration with up-regulation of dynamin II expression. PLoS One. 2012;7(5):e38235. doi: https://doi.org/10.1371/journal.pone.0038235. Epub 2012 May 30. PMID: 22666495; PMCID: PMC3364209.

  16. Liao X, Xie GH, Liu HW, Cheng B, Li SH, Xie S, Xiao LL, Fu XB. Helium-neon laser irradiation promotes the proliferation and migration of human epidermal stem cells in vitro: proposed mechanism for enhanced wound re-epithelialization. Photomed Laser Surg. 2014 Apr;32(4):219–25. doi: https://doi.org/10.1089/pho.2013.3667. Epub 2014 Mar 24. PMID: 24661127; PMCID: PMC3985538.

  17. Rochkind S, El-Ani D, Nevo Z, Shahar A (2009Apr) Increase of neuronal sprouting and migration using 780 nm laser phototherapy as procedure for cell therapy. Lasers Surg Med 41(4):277–281. https://doi.org/10.1002/lsm.20757. (PMID: 19347939)

    Article  PubMed  Google Scholar 

  18. Frozanfar A, Ramezani M, Rahpeyma A, Khajehahmadi S, Arbab HR. The effects of low level laser therapy on the expression of collagen type I gene and proliferation of human gingival fibroblasts (Hgf3-Pi 53): in vitro study. Iran J Basic Med Sci. 2013 Oct;16(10):1071–4. PMID: 24379964; PMCID: PMC3874093.

  19. Abrahamse H (2012Dec) Regenerative medicine, stem cells, and low-level laser therapy: future directives. Photomed Laser Surg 30(12):681–682. https://doi.org/10.1089/pho.2012.9881. (Epub 2012 Nov 9 PMID: 23140266)

    Article  PubMed  Google Scholar 

  20. Min KH, Byun JH, Heo CY, Kim EH, Choi HY, Pak CS (2015Oct) Effect of low-level laser therapy on human adipose-derived stem cells: in vitro and in vivo studies. Aesthetic Plast Surg 39(5):778–782. https://doi.org/10.1007/s00266-015-0524-6. (Epub 2015 Jul 17 PMID: 26183254)

    Article  PubMed  Google Scholar 

  21. Ferraresi C, Kaippert B, Avci P, Huang YY, de Sousa MV, Bagnato VS, Parizotto NA, Hamblin MR. Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochem Photobiol. 2015 Mar-Apr;91(2):411–6. doi: https://doi.org/10.1111/php.12397. Epub 2014 Dec 30. PMID: 25443662; PMCID: PMC4355185.

  22. Khuman J, Zhang J, Park J, Carroll JD, Donahue C, Whalen MJ. Low-level laser light therapy improves cognitive deficits and inhibits microglial activation after controlled cortical impact in mice. J Neurotrauma. 2012 Jan 20;29(2):408–17. doi: https://doi.org/10.1089/neu.2010.1745. Epub 2011 Sep 21. PMID: 21851183; PMCID: PMC3261787.

  23. Bouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N (2009Apr) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 41(4):291–297. https://doi.org/10.1002/lsm.20759. (PMID: 19347941)

    Article  PubMed  Google Scholar 

  24. Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR. Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics. 2015 Jun;8(6):502–11. doi: https://doi.org/10.1002/jbio.201400069. Epub 2014 Sep 8. PMID: 25196192; PMCID: PMC5379854.

  25. Chan, a; Armati, P .; Moorthy, aP . Pulsed Nd: Y AG laser induces pulpal analgesia: a randomized clinical trial. J. Dent. Res. 2012; 91(7 Suppl):S79–S84.

  26. Peres e Serra A, a Ashmawi H. Influence of naloxone and methysergide on the analgesic effects of low-level laser in an experimental pain model. Rev. Bras. Anestesiol. 2010; 60(3):302–310. [PubMed: 20682161]

  27. Fujimoto K, Kiyosaki T, Mitsui N, Mayahara K, Omasa S, Suzuki N, Shimizu N (2010Aug) Low-intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells. Lasers Surg Med 42(6):519–526. https://doi.org/10.1002/lsm.20880. (PMID: 20662028)

    Article  PubMed  Google Scholar 

  28. Hoffman M, Monroe DM. Low intensity laser therapy speeds wound healing in hemophilia by enhancing platelet procoagulant activity. Wound Repair Regen. 2012 Sep-Oct;20(5):770–7. doi: https://doi.org/10.1111/j.1524-475X.2012.00828.x. Epub 2012 Aug 10. PMID: 22882528.

  29. Guo Y, Qu Q, Chen J, Miao Y, Hu Z (2021Jun) Proposed mechanisms of low-level light therapy in the treatment of androgenetic alopecia. Lasers Med Sci 36(4):703–713. https://doi.org/10.1007/s10103-020-03159-z. (Epub 2020 Oct 28 PMID: 33111207)

    Article  PubMed  Google Scholar 

  30. Liu KH, Liu D, Chen YT, Chin SY (2019Aug) Comparative effectiveness of low-level laser therapy for adult androgenic alopecia: a system review and meta-analysis of randomized controlled trials. Lasers Med Sci 34(6):1063–1069. https://doi.org/10.1007/s10103-019-02723-6. (Epub 2019 Jan 31 PMID: 30706177)

    Article  PubMed  Google Scholar 

  31. Suchonwanit P, Chalermroj N, Khunkhet S (2019) Low-level laser therapy for the treatment of androgenetic alopecia in Thai men and women: a 24-week, randomized, double-blind, sham device-controlled trial. Lasers Med Sci 34:1107–1114

    Article  PubMed  Google Scholar 

  32. Yoon JS, Ku WY, Lee JH, Ahn HC (2020) Low-level light therapy using a helmet-type device for the treatment of androgenetic alopecia: a 16-week, multicenter, randomized, double-blind, sham device-controlled trial. Medicine (Baltimore) 99(29):e21181. https://doi.org/10.1097/MD.0000000000021181

    Article  CAS  PubMed  Google Scholar 

  33. Alhattab MK, Al Abdullah MJ, Al-Janabi MH, Aljanaby WA, Alwakeel HA (2020) The effect of 1540-nm fractional erbium-glass laser in the treatment of androgenic alopecia. J Cosmet Dermatol 19(4):878–883. https://doi.org/10.1111/jocd.13122

    Article  PubMed  Google Scholar 

  34. Panchaprateep R, Pisitkun T, Kalpongnukul N (2019) Quantitative proteomic analysis of dermal papilla from male androgenetic alopecia comparing before and after treatment with low-level laser therapy. Lasers Surg Med 51(7):600–608. https://doi.org/10.1002/lsm.23074

    Article  PubMed  Google Scholar 

  35. Maitriwong P, Tangkijngamvong N, Asawanonda P (2020) Innovative 1064-nm Nd:YAG laser significantly improves keratosis pilaris, a randomized, double-blind, sham-irradiation-controlled trial. Lasers Surg Med 52(6):509–514. https://doi.org/10.1002/lsm.23184

    Article  PubMed  Google Scholar 

  36. Choi MS, Park BC (2023) The efficacy and safety of the combination of photobiomodulation therapy and pulsed electromagnetic field therapy on androgenetic alopecia. J Cosmet Dermatol 22(3):831–836. https://doi.org/10.1111/jocd.15490

    Article  PubMed  Google Scholar 

  37. Ferrara F, Kakizaki P, de Brito FF, Contin LA, Machado CJ, Donati A. Efficacy of minoxidil combined with photobiomodulation for the treatment of male androgenetic alopecia. A Double-Blind Half-Head Controlled Trial. Lasers Surg Med. 2021;53(9):1201–1207. doi:https://doi.org/10.1002/lsm.23411

  38. Saceda-Corralo D, Domínguez-Santas M, Vañó-Galván S, Grimalt R (2023Jan) What’s new in therapy for male androgenetic alopecia? Am J Clin Dermatol 24(1):15–24. https://doi.org/10.1007/s40257-022-00730-y. (Epub 2022 Sep 28 PMID: 36169916)

    Article  PubMed  Google Scholar 

  39. Gao JL, Streed CG Jr, Thompson J, Dommasch ED, Peebles JK (2023Oct) Androgenetic alopecia in transgender and gender diverse populations: a review of therapeutics. J Am Acad Dermatol 89(4):774–783. https://doi.org/10.1016/j.jaad.2021.08.067. (Epub 2021 Oct 28 PMID: 34756934)

    Article  CAS  PubMed  Google Scholar 

  40. Piccolo D, Crisman G, Conforti C, Buzzi M, Genovesi C, Marchi D, Mazzaracchio D, Goldust M. Trichobiolight: a new, effective protocol in the treatment of androgenetic alopecia and telogen effluvium. Dermatol Ther. 2021 Mar;34(2):e14799. doi: https://doi.org/10.1111/dth.14799. Epub 2021 Feb 7. PMID: 33486860.

Download references

Acknowledgements

We would like to acknowledge the hard and dedicated work of all the staff that implemented the intervention and evaluation components of the study.

Funding

This study received financial support from the 2022 Capital Health Development Scientific Research Project (2022-2Z-2076).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the research: Fan Zhang.

Acquisition of data: Qiaoyu Li, Wenxin Qin.

Analysis and interpretation of the data: Qiaoyu Li, Wenxin Qin.

Statistical analysis: Wei Ren, Peiqiu Zhu, Qiuzi Jin, Man Li.

Obtaining financing: Fan Zhang.

Writing of the manuscript: Wei Ren, Peiqiu Zhu, Qiuzi Jin, Man Li.

Critical revision of the manuscript for intellectual content: Fan Zhang.

All authors read and approved the final draft.

Corresponding author

Correspondence to Fan Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Li, Q., Qin, W. et al. A study of the biological effects of low-level light. Lasers Med Sci 39, 74 (2024). https://doi.org/10.1007/s10103-024-04018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-024-04018-x

Keywords

Navigation