Skip to main content
Log in

Identification of Idiopathic Pulmonary Fibrosis and Prediction of Disease Severity via Machine Learning Analysis of Comprehensive Metabolic Panel and Complete Blood Count Data

  • IDIOPATHIC PULMONARY FIBROSIS
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

Diagnosis of idiopathic pulmonary fibrosis (IPF) typically relies on high-resolution computed tomography imaging (HRCT) or histopathology, while monitoring disease severity is done via frequent pulmonary function testing (PFT). More reliable and convenient methods of diagnosing fibrotic interstitial lung disease (ILD) type and monitoring severity would allow for early identification and enhance current therapeutic interventions. This study tested the hypothesis that a machine learning (ML) ensemble analysis of comprehensive metabolic panel (CMP) and complete blood count (CBC) data can accurately distinguish IPF from connective tissue disease ILD (CTD-ILD) and predict disease severity as seen with PFT.

Methods

Outpatient data with diagnosis of IPF or CTD-ILD (n = 103 visits by 53 patients) were analyzed via ML methodology to evaluate (1) IPF vs CTD-ILD diagnosis; (2) %predicted Diffusing Capacity of Lung for Carbon Monoxide (DLCO) moderate or mild vs severe; (3) %predicted Forced Vital Capacity (FVC) moderate or mild vs severe; and (4) %predicted FVC mild vs moderate or severe.

Results

ML methodology identified IPF from CTD-ILD with AUCTEST = 0.893, while PFT was classified as DLCO moderate or mild vs severe with AUCTEST = 0.749, FVC moderate or mild vs severe with AUCTEST = 0.741, and FVC mild vs moderate or severe with AUCTEST = 0.739. Key features included albumin, alanine transaminase, %lymphocytes, hemoglobin, %eosinophils, white blood cell count, %monocytes, and %neutrophils.

Conclusion

Analysis of CMP and CBC data via proposed ML methodology offers the potential to distinguish IPF from CTD-ILD and predict severity on associated PFT with accuracy that meets or exceeds current clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. U.S. National Library of Medicine, N.I.H. Idiopathic pulmonary fibrosis. https://ghr.nlm.nih.gov/condition/idiopathic-pulmonary-fibrosis. Accessed 30 Aug 2019

  2. Raghu G et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183(6):788–824

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blackwell TS et al (2014) Future directions in idiopathic pulmonary fibrosis research. An NHLBI workshop report. Am J Respir Crit Care Med 189(2):214–222

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lederer DJ, Martinez FJ (2018) Idiopathic pulmonary fibrosis. N Engl J Med 379(8):797–798

    PubMed  Google Scholar 

  5. Chung JH et al (2021) Differentiation of idiopathic pulmonary fibrosis from connective tissue disease-related interstitial lung disease using quantitative imaging. J Clin Med 10:12

    Article  Google Scholar 

  6. Suzuki A, Kondoh Y, Fischer A (2017) Recent advances in connective tissue disease related interstitial lung disease. Expert Rev Respir Med 11(7):591–603

    Article  CAS  PubMed  Google Scholar 

  7. Erre GL et al (2021) Antifibrotic drugs in connective tissue disease-related interstitial lung disease (CTD-ILD): from mechanistic insights to therapeutic applications. Drugs Context 10:1

    Google Scholar 

  8. Hayton C et al (2019) Breath biomarkers in idiopathic pulmonary fibrosis: a systematic review. Respir Res 20:1

    Article  Google Scholar 

  9. Hochhegger B et al (2019) Imaging in idiopathic pulmonary fibrosis: diagnosis and mimics. Clinics (Sao Paulo) 74:e225

    Article  PubMed  Google Scholar 

  10. Raghu G et al (2018) Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med 198(5):e44–e68

    Article  PubMed  Google Scholar 

  11. Guiot J et al (2017) Blood biomarkers in idiopathic pulmonary fibrosis. Lung 195(3):273–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hachisu Y et al (2019) Possible serological markers to predict mortality in acute exacerbation of idiopathic pulmonary fibrosis. Medicina (Kaunas) 55:5

    Google Scholar 

  13. Maher TM et al (2017) An epithelial biomarker signature for idiopathic pulmonary fibrosis: an analysis from the multicentre PROFILE cohort study. Lancet Respir Med 5(12):946–955

    Article  CAS  PubMed  Google Scholar 

  14. Zhang T et al (2021) KL-6 as an immunological biomarker predicts the severity, progression, acute exacerbation, and poor outcomes of interstitial lung disease: a systematic review and meta-analysis. Front Immunol 12:745233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zinellu A et al (2020) Blood cell count derived inflammation indexes in patients with idiopathic pulmonary fibrosis. Lung 198(5):821–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wuyts WA et al (2020) Idiopathic pulmonary fibrosis: best practice in monitoring and managing a relentless fibrotic disease. Respiration 99(1):73–82

    Article  PubMed  Google Scholar 

  17. Fernández Fabrellas E et al (2018) Prognosis and follow-up of idiopathic pulmonary fibrosis. Med Sci 6(2):51

    Google Scholar 

  18. Stephan S et al (2007) Oxygen desaturation during a 4-minute step test: predicting survival in idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis 24(1):70–76

    PubMed  Google Scholar 

  19. Ley B, Collard HR, King TE Jr (2011) Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 183(4):431–440

    Article  PubMed  Google Scholar 

  20. Nishiyama O et al (2016) Prognostic value of forced expiratory volume in 1 second/forced vital capacity in idiopathic pulmonary fibrosis. Chron Respir Dis 13(1):40–47

    Article  PubMed  Google Scholar 

  21. Ley B et al (2016) Predictors of mortality poorly predict common measures of disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 194(6):711–718

    Article  PubMed  PubMed Central  Google Scholar 

  22. Travis WD et al (2013) An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188(6):733–748

    Article  PubMed  PubMed Central  Google Scholar 

  23. Julious SA (2005) Sample size of 12 per group rule of thumb for a pilot study. Pharm Stat 4:287–291

    Article  Google Scholar 

  24. Nguyen L-P, Harper RW, Louie S (2016) Using and interpreting carbon monoxide diffusing capacity (DLco) correctly. Consultant 56(5):440–445

    Google Scholar 

  25. Dempsey TM, Scanlon PD (2018) Pulmonary function tests for the generalist: a brief review. In: Mayo Clinic proceedings. Elsevier, Amsterdam

  26. Johnson JD, Theurer WM (2014) A stepwise approach to the interpretation of pulmonary function tests. Am Fam Phys 89(5):359–366

    Google Scholar 

  27. Raghu G et al (2022) Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med 205(9):e18–e47

    Article  PubMed  PubMed Central  Google Scholar 

  28. van Buuren S et al (2015) Package ‘mice’. Computer software

  29. Waljee AK et al (2013) Comparison of imputation methods for missing laboratory data in medicine. BMJ Open 3(8):e002847

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jadhav A, Pramod D, Ramanathan K (2019) Comparison of performance of data imputation methods for numeric dataset. Appl Artif Intell 33(10):913–933

    Article  Google Scholar 

  31. Stekhoven DJ, Bühlmann P (2012) MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1):112–118

    Article  CAS  PubMed  Google Scholar 

  32. Collins GS et al (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med 13:1

    Article  PubMed  PubMed Central  Google Scholar 

  33. Miller HA, van Berkel VH, Frieboes HB (2022) Lung cancer survival prediction and biomarker identification with an ensemble machine learning analysis of tumor core biopsy metabolomic data. Metabolomics 18(8):1–12

    Article  Google Scholar 

  34. Grandini M, Bagli E, Visani G (2020) Metrics for multi-class classification: an overview. arXiv preprint arXiv:2008.05756

  35. Fatourechi M et al (2008) Comparison of evaluation metrics in classification applications with imbalanced datasets. In: 2008 seventh international conference on machine learning and applications, 2008. IEEE

  36. Katzenstein AL, Myers JL (2001) Idiopathic pulmonary fibrosis: to biopsy or not to biopsy. Am J Respir Crit Care Med 164(2):185–186

    Article  CAS  PubMed  Google Scholar 

  37. Hunninghake GW et al (2001) Utility of a lung biopsy for the diagnosis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 164(2):193–196

    Article  CAS  PubMed  Google Scholar 

  38. Montesi SB et al (2020) Update in interstitial lung disease 2019. Am J Respir Crit Care Med 1:1

    Google Scholar 

  39. Vij R, Noth I (2012) Peripheral blood biomarkers in idiopathic pulmonary fibrosis. Transl Res 159(4):218–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stainer A et al (2021) Molecular biomarkers in idiopathic pulmonary fibrosis: state of the art and future directions. Int J Mol Sci 22(12):6255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krauss E et al (2019) Exploring the ability of electronic nose technology to recognize Interstitial Lung Diseases (ILD) by Non-Invasive Breath Screening of Exhaled Volatile Compounds (VOC): a pilot study from the European IPF Registry (eurIPFreg) and Biobank. J Clin Med 8(10):1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dragonieri S et al (2020) Exhaled volatile organic compounds analysis by e-nose can detect idiopathic pulmonary fibrosis. J Breath Res 14(4):047101

    Article  CAS  PubMed  Google Scholar 

  43. Hayton C et al (2019) Breath biomarkers in idiopathic pulmonary fibrosis: a systematic review. Respir Res 20(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yamada YI et al (2017) Volatile organic compounds in exhaled breath of idiopathic pulmonary fibrosis for discrimination from healthy subjects. Lung 195(2):247–254

    Article  CAS  PubMed  Google Scholar 

  45. Plantier L et al (2022) The use of exhaled air analysis in discriminating interstitial lung diseases: a pilot study. Respir Res 23(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taylor MJ et al (2024) Disease diagnosis and severity classification in pulmonary fibrosis using carbonyl volatile organic compounds in exhaled breath. Respir Med (in press)

  47. Spagnolo P et al (2021) Idiopathic pulmonary fibrosis: disease mechanisms and drug development. Pharmacol Ther 222:107798

    Article  CAS  PubMed  Google Scholar 

  48. Cabrera Cesar E et al (2021) Serum biomarkers in differential diagnosis of idiopathic pulmonary fibrosis and connective tissue disease-associated interstitial lung disease. J Clin Med 10(14):3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Raghu G et al (1999) The accuracy of the clinical diagnosis of new-onset idiopathic pulmonary fibrosis and other interstitial lung disease: a prospective study. Chest 116(5):1168–1174

    Article  CAS  PubMed  Google Scholar 

  50. Kishaba T et al (2021) Radiological and physiological predictors of IPF mortality. Medicina 57(10):1121

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zappala C et al (2010) Marginal decline in forced vital capacity is associated with a poor outcome in idiopathic pulmonary fibrosis. Eur Respir J 35(4):830–836

    Article  CAS  PubMed  Google Scholar 

  52. Hunninghake GW et al (1981) Mechanisms of neutrophil accumulation in the lungs of patients with idiopathic pulmonary fibrosis. J Clin Invest 68(1):259–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schmid U et al (2021) Exposure-safety analyses of nintedanib in patients with chronic fibrosing interstitial lung disease. BMC Pulm Med 21(1):244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lancaster L et al (2017) Safety of pirfenidone in patients with idiopathic pulmonary fibrosis: experience from 92 sites in an open-label US expanded access program. Pulm Ther 3(2):317–325

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ikeda S et al (2017) Hepatotoxicity of nintedanib in patients with idiopathic pulmonary fibrosis: a single-center experience. Respir Investig 55(1):51–54

    Article  PubMed  Google Scholar 

  56. Soeters PB, Wolfe RR, Shenkin A (2019) Hypoalbuminemia: pathogenesis and clinical significance. JPEN J Parenter Enteral Nutr 43(2):181–193

    Article  CAS  PubMed  Google Scholar 

  57. Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265(3):621–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zisman DA et al (2009) Serum albumin concentration and waiting list mortality in idiopathic interstitial pneumonia. Chest 135(4):929–935

    Article  PubMed  Google Scholar 

  59. American Thoracic S, European Respiratory S (2002) American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am J Respir Crit Care Med 165(2):277–304.

  60. Zoz DF, Lawson WE, Blackwell TS (2011) Idiopathic pulmonary fibrosis: a disorder of epithelial cell dysfunction. Am J Med Sci 341(6):435–438

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen YH et al (2023) Clinical outcomes and risk factors of progressive pulmonary fibrosis in primary Sjogren’s syndrome-associated interstitial lung disease. BMC Pulm Med 23(1):268

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nathan SD et al (2020) The association between white blood cell count and outcomes in patients with idiopathic pulmonary fibrosis. Respir Med 170:106068

    Article  PubMed  Google Scholar 

  63. Xu L et al (2019) High hemoglobin is associated with increased in-hospital death in patients with chronic obstructive pulmonary disease and chronic kidney disease: a retrospective multicenter population-based study. BMC Pulm Med 19(1):174

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ruta VM et al (2020) Neutrophil-to-lymphocyte ratio and systemic immune-inflammation index-biomarkers in interstitial lung disease. Medicina (Kaunas) 56:8

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge partial funding by University of Louisville office of Executive Vice-President for Research and Innovation (EVPRI).

Author information

Authors and Affiliations

Authors

Contributions

Clinical study design: SS; Data collection: MT and SS; Machine learning implementation: AM; Machine learning analysis: AM, HM, and HF; Manuscript writing: AM and HF; Manuscript revision and editing: AM, HM, SS, and HF.

Corresponding authors

Correspondence to Sally A. Suliman or Hermann B. Frieboes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 848 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueller, A.N., Miller, H.A., Taylor, M.J. et al. Identification of Idiopathic Pulmonary Fibrosis and Prediction of Disease Severity via Machine Learning Analysis of Comprehensive Metabolic Panel and Complete Blood Count Data. Lung 202, 139–150 (2024). https://doi.org/10.1007/s00408-024-00673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-024-00673-7

Keywords

Navigation