Skip to main content
Log in

Potential of multi-seasonal vegetation indices to predict rice yield from UAV multispectral observations

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Rice stands as the paramount food crop worldwide, catering to more than half of the global populace as staple sustenance. Accurately and non-destructively predicting rice yield on a large scale assumes paramount importance for assessing rice growth, market planning and food security monitoring. Nonetheless, the pivotal factors that influence the final yield remain inadequately understood. In this study, we evaluated the variation patterns of Normalized Difference Vegetation Index, Enhanced Vegetation Index, Ratio Vegetation Index, Red Edge Ratio Vegetation Index and Normalized Difference Red Edge during crucial growth stages of long, medium and short-grain rice cultivars (YX054, DF018 and LF203) from 2019 to 2021. We investigated the correlation between vegetation index (VI) combinations at different growth stages and rice yield for these three cultivars. To establish predictive models, we deployed multi-seasonal VIs from multi-year dataset and three regression algorithms: partial least squares regression (PLSR), random forest regression (RFR) and support vector regression (SVR). The outcomes evinced a lack of significant correlation between single-season VIs and rice yield. The PLSR algorithm was deemed optimal for YX054, while the RFR was adjudged most suitable for DF018 and LF203. Moreover, the triple-growth and quadruple-growth period VIs models evinced superior robustness compared to the penta-growth period VIs models for all three cultivars, attaining the highest R2 value of 0.86 and the lowest RMSE of 88.17 kg/ha. This paper underscores the criticality of multi-seasonal VIs in bolstering the performance of rice yield prediction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Ahamed, T., Tian, L., Zhang, Y., & Ting, K. J. (2011). A review of remote sensing methods for biomass feedstock production. Biomass and Bioenergy, 35(7), 2455–2469. https://doi.org/10.1016/j.biombioe.2011.02.028

    Article  Google Scholar 

  • Ahmed, M. S., Tazwar, M. T., Khan, H., Roy, S., Iqbal, J., Rabiul Alam, M. G., Hassan, M. R., & Hassan, M. M. (2022). Yield response of different rice ecotypes to meteorological, agro-chemical, and soil physiographic factors for interpretable precision agriculture using extreme gradient boosting and support vector regression. Complexity, 2022, 5305353. https://doi.org/10.1155/2022/5305353

    Article  Google Scholar 

  • Berlanga-Robles, C. A., Ruiz-Luna, A., & Villanueva, M. R. N. (2019). Seasonal trend analysis (STA) of MODIS vegetation index time series for the mangrove canopy of the Teacapan-Agua Brava lagoon system, Mexico. Giscience & Remote Sensing, 56(3), 338–361. https://doi.org/10.1080/15481603.2018.1533679

    Article  Google Scholar 

  • Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., & Friedl, M. A. (2020). Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sensing of Environment, 240, 16. https://doi.org/10.1016/j.rse.2020.111685

    Article  Google Scholar 

  • Butterfield, Z., Buermann, W., & Keppel-Aleks, G. (2020). Satellite observations reveal seasonal redistribution of northern ecosystem productivity in response to interannual climate variability. Remote Sensing of Environment, 242, 13. https://doi.org/10.1016/j.rse.2020.111755

    Article  Google Scholar 

  • Cao, J., Zhang, Z., Tao, F. L., Zhang, L. L., Luo, Y. C., Zhang, J., Han, J. C., & Xie, J. (2021). Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches. Agricultural and Forest Meteorology, 297, 15. https://doi.org/10.1016/j.agrformet.2020.108275

    Article  Google Scholar 

  • Cao, Q., Miao, Y., Wang, H., Huang, S., Cheng, S., Khosla, R., & Jiang, R. (2013). Non-destructive estimation of rice plant nitrogen status with crop circle multispectral active canopy sensor. Field Crops and Research, 154, 133–144. https://doi.org/10.1016/j.fcr.2013.08.005

    Article  Google Scholar 

  • Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241–252. https://doi.org/10.1016/S0034-4257(97)00104-1

    Article  ADS  Google Scholar 

  • Cerioli, T., Hernandez, C. O., Angira, B., McCouch, S. R., Robbins, K. R., & Famoso, A. N. (2022). Development and validation of an optimized marker set for genomic selection in southern US rice breeding programs. Plant Genome, 15(3), 15. https://doi.org/10.1002/tpg2.20219

    Article  CAS  Google Scholar 

  • Danner, M., Berger, K., Wocher, M., Mauser, W., & Hank, T. (2021). Efficient RTM-based training of machine learning regression algorithms to quantify biophysical & biochemical traits of agricultural crops. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 278–296. https://doi.org/10.1016/j.isprsjprs.2021.01.017

    Article  ADS  Google Scholar 

  • Feng, L. W., Zhang, Z., Ma, Y. C., Du, Q. Y., Williams, P., Drewry, J., & Luck, B. (2020). Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning. Remote Sensing, 12(12), 23. https://doi.org/10.3390/rs12122028

    Article  Google Scholar 

  • Feng, X., Yan, F., Liu, X., & Jiang, Q. (2022). Development of IoT cloud platform based intelligent raising system for rice seedlings. Wireless Personal Communications, 122(2), 1695–1707. https://doi.org/10.1007/s11277-021-08967-2

    Article  Google Scholar 

  • Fu, Z. P., Jiang, J., Gao, Y., Krienke, B., Wang, M., Zhong, K. T., Cao, Q., Tian, Y. C., Zhu, Y., Cao, W. X., & Liu, X. (2020). Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicle. Remote Sensing, 12(3), 19. https://doi.org/10.3390/rs12030508

    Article  Google Scholar 

  • Galushko, V., & Gamtessa, S. (2022). Impact of climate change on productivity and technical efficiency in Canadian crop production. Sustainability, 14(7), 21. https://doi.org/10.3390/su14074241

    Article  Google Scholar 

  • Guzman, Q. J. A., Sanchez-Azofeifa, G. A., & Espirito-Santo, M. M. (2019). MODIS and PROBA-V NDVI products differ when compared with observations from phenological towers at four tropical dry forests in the Americas. Remote Sensing, 11(19), 18. https://doi.org/10.3390/rs11192316

    Article  Google Scholar 

  • Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352. https://doi.org/10.1016/j.rse.2003.12.013

    Article  ADS  Google Scholar 

  • He, Y., Peng, J., Liu, F., Zhang, C., & Kong, W. (2015). Critical review of fast detection of crop nutrient and physiological information with spectral and imaging technology. Transactions of the Chinese Society of Agricultural Engineering, 31(3), 174–189.

    Google Scholar 

  • Kheiri, M., Soufizadeh, S., Ghaffari, A., AghaAlikhani, M., & Eskandari, A. (2017). Association between temperature and precipitation with dryland wheat yield in northwest of Iran. Climatic Change, 141(4), 703–717. https://doi.org/10.1007/s10584-017-1904-5

    Article  Google Scholar 

  • Kinoshita, R., Rossiter, D., & van Es, H. (2021). Spatio-temporal analysis of yield and weather data for defining site-specific crop management zones. Precision Agriculture, 22(6), 1952–1972. https://doi.org/10.1007/s11119-021-09820-z

    Article  Google Scholar 

  • Li, B., Xu, X. M., Zhang, L., Han, J. W., Bian, C. S., Li, G. C., Liu, J. G., & Jin, L. P. (2020). Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 161–172. https://doi.org/10.1016/j.isprsjprs.2020.02.013

    Article  ADS  Google Scholar 

  • Li, C. L., Wang, J., Hu, R. C., Yin, S., Bao, Y. H., & Ayal, D. Y. (2018a). Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013. Ecological Indicators, 89, 101–109. https://doi.org/10.1016/j.ecolind.2018.01.066

    Article  Google Scholar 

  • Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., Liu, Y., Liu, B., Ustin, S. L., & Chen, X. (2014). Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research, 157, 111–123. https://doi.org/10.1016/j.fcr.2013.12.018

    Article  Google Scholar 

  • Li, N., Xu, R., Duan, P. G., & Li, Y. H. (2018b). Control of grain size in rice. Plant Reproduction, 31(3), 237–251. https://doi.org/10.1007/s00497-018-0333-6

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. P., Chen, Y. N., Sun, F., & Li, Z. (2021). Recent vegetation browning and its drivers on Tianshan Mountain, Central Asia. Ecological Indicators, 129, 10. https://doi.org/10.1016/j.ecolind.2021.107912

    Article  Google Scholar 

  • Litardo, R. C. M., Bendezú, S. J. G., Zenteno, M. D. C., Pérez-Almeida, I. B., Parismoreno, L. L., & García, E. D. L. (2022). Effect of mineral and organic amendments on rice growth and yield in saline soils. Journal of the Saudi Society of Agricultural Sciences, 21(1), 29–37.

    Article  Google Scholar 

  • Liu, X., Zhang, D., Wu, H., Elser, J. J., & Yuan, Z. (2023). Uncovering the spatio-temporal dynamics of crop-specific nutrient budgets in China. Journal of Environmental Management, 340, 117904. https://doi.org/10.1016/j.jenvman.2023.117904

    Article  PubMed  Google Scholar 

  • Marino, S., & Alvino, A. (2021). Vegetation indices data clustering for dynamic monitoring and classification of wheat yield crop traits. Remote Sensing, 13(4), 21. https://doi.org/10.3390/rs13040541

    Article  Google Scholar 

  • Meng, X. Y., Gao, X., Li, S. Y., & Lei, J. Q. (2020). Spatial and temporal characteristics of vegetation NDVI changes and the driving forces in Mongolia during 1982–2015. Remote Sensing, 12(4), 25. https://doi.org/10.3390/rs12040603

    Article  Google Scholar 

  • Muharam, F. M., Nurulhuda, K., Zulkafli, Z., Tarmizi, M. A., Abdullah, A. N. H., Hashim, M. F. C., Zad, S. N. M., Radhwane, D., & Ismail, M. R. (2021). UAV- and random-forest-AdaBoost (RFA)-based estimation of rice plant traits. Agronomy, 11(5), 28. https://doi.org/10.3390/agronomy11050915

    Article  Google Scholar 

  • Nichol, C. J., Huemmrich, K. F., Black, T. A., Jarvis, P. G., Walthall, C. L., Grace, J., Hall, F. G. J. A., & Meteorology, F. (2000). Remote sensing of photosynthetic-light-use efficiency of boreal forest. Agricultural and Forest Meteorology, 101(2–3), 131–142.

    Article  ADS  Google Scholar 

  • Nijat, K., Shi, Q., Wang, J., Rukeya, S., Ilyas, N., & Gulnur, I. (2017). Estimation of spring wheat chlorophyll content based on hyperspectral features and PLSR model. Transactions of the Chinese Society of Agricultural Engineering, 33(22), 208–216.

    Google Scholar 

  • Ong, P., Tung, I. C., Chiu, C. F., Tsai, I. L., Shih, H. C., Chen, S. M., & Chuang, Y. K. (2022). Determination of aflatoxin B-1 level in rice (Oryza sativa L.) through near-infrared spectroscopy and an improved simulated annealing variable selection method. Food Control, 136, 12. https://doi.org/10.1016/j.foodcont.2022.108886

    Article  CAS  Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42. https://doi.org/10.1038/nature01286

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rasti, S., Bleakley, C. J., Holden, N., Whetton, R., Langton, D., & O’Hare, G. (2022). A survey of high resolution image processing techniques for cereal crop growth monitoring. Information Processing in Agriculture, 9(2), 300–315. https://doi.org/10.1016/j.inpa.2021.02.005

    Article  Google Scholar 

  • Rehman, S. (2009). Study of Saudi Arabian climatic conditions using Hurst exponent and climatic predictability index. Chaos Solitons & Fractals, 39(2), 499–509. https://doi.org/10.1016/j.chaos.2007.01.079

    Article  ADS  Google Scholar 

  • Ryu, J. H., Oh, D., Ko, J., Kim, H. Y., Yeom, J. M., & Cho, J. (2022). Remote Sensing-based evaluation of heat stress damage on paddy rice using NDVI and PRI measured at leaf and canopy scales. Agronomy-Basel, 12(8), 20. https://doi.org/10.3390/agronomy12081972

    Article  Google Scholar 

  • Schiefer, F., Kattenborn, T., Frick, A., Frey, J., Schall, P., Koch, B., & Schmidtlein, S. (2020). Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 170, 205–215. https://doi.org/10.1016/j.isprsjprs.2020.10.015

    Article  ADS  Google Scholar 

  • Siegfried, J., Adams, C. B., Rajan, N., Hague, S., Schnell, R., & Hardin, R. (2023). Combining a cotton ‘Boll Area Index’with in-season unmanned aerial multispectral and thermal imagery for yield estimation. Field Crops Research, 291, 108765. https://doi.org/10.1016/j.fcr.2022.108765

    Article  Google Scholar 

  • Smith, W. K., Dannenberg, M. P., Yan, D., Herrmann, S., Barnes, M. L., Barron-Gafford, G. A., Biederman, J. A., Ferrenberg, S., Fox, A. M., Hudson, A., & Knowles, J. F. (2019). Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sensing of Environment, 233, 23. https://doi.org/10.1016/j.rse.2019.111401

    Article  Google Scholar 

  • Sun, Y., Zhang, X. C., Huang, J. F., Wang, H. Y., & Xin, Q. C. (2022). Fine-grained building change detection from very high-spatial-resolution remote sensing images based on deep multitask learning. IEEE Geoscience and Remote Sensing Letters, 19, 5. https://doi.org/10.1109/lgrs.2020.3018858

    Article  Google Scholar 

  • Taghizadeh-Mehrjardi, R., Schmidt, K., Toomanian, N., Heung, B., Behrens, T., Mosavi, A., Band, S. S., Amirian-Chakan, A., Fathabadi, A., & Scholten, T. (2021). Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models. Geoderma, 383, 21. https://doi.org/10.1016/j.geoderma.2020.114793

    Article  CAS  Google Scholar 

  • Tian, H. F., Chen, T., Li, Q. Z., Mei, Q. Y., Wang, S., Yang, M. D., Wang, Y. J., & Qin, Y. C. (2022). A novel spectral index for automatic canola mapping by using sentinel-2 imagery. Remote Sensing, 14(5), 18. https://doi.org/10.3390/rs14051113

    Article  Google Scholar 

  • Tsujimoto, K., Kuriya, N., Ohta, T., Homma, K., & Im, M. S. (2022). Quantifying the GCM-related uncertainty for climate change impact assessment of rainfed rice production in Cambodia by a combined hydrologic-rice growth model. Ecological Modelling, 464, 15. https://doi.org/10.1016/j.ecolmodel.2021.109815

    Article  Google Scholar 

  • Wang, H., Guo, X., Zhang, Q., Ma, Y., Li, M., Jiang, H., Hu, Y., Lan, Y., Xu, L., & Guo, H. (2020a). Effects of sowing in line under water on agronomic characters and yield components of rice in cold region. Crops, 2020, 10.

    Google Scholar 

  • Wang, J. Y., Li, X. R., Guo, T. T., Dzievit, M. J., Yu, X. Q., Liu, P., Price, K. P., & Yu, J. M. (2021c). Genetic dissection of seasonal vegetation index dynamics in maize through aerial based high-throughput phenotyping. Plant Genome, 14(3), 18. https://doi.org/10.1002/tpg2.20155

    Article  CAS  Google Scholar 

  • Wang, J. W., Sun, X. B., Xu, Y. N., Wang, Q., Tang, H., & Zhou, W. Q. (2021a). The effect of harvest date on yield loss of long and short-grain rice cultivars (Oryza sativa L.) in Northeast China. European Journal of Agronomy, 131, 11. https://doi.org/10.1016/j.eja.2021.126382

    Article  Google Scholar 

  • Wang, J. W., Sun, X. B., Xu, Y. N., Zhou, W. Q., Tang, H., & Wang, Q. (2021b). Timeliness harvesting loss of rice in cold region under different mechanical harvesting methods. Sustainability, 13(11), 18. https://doi.org/10.3390/su13116345

    Article  Google Scholar 

  • Wang, L. J., Duan, Y. H., Zhang, L. B., Rehman, T. U., Ma, D. D., & Jin, J. (2020b). Precise estimation of NDVI with a simple NIR sensitive RGB camera and machine learning methods for corn plants. Sensors, 20(11), 15. https://doi.org/10.3390/s20113208

    Article  Google Scholar 

  • Wang, Y. L., Liao, Z. N., Mathieu, S., Bin, F., & Tu, X. (2021d). Prediction and evaluation of plasma arc reforming of naphthalene using a hybrid machine learning model. Journal of Hazardous Materials, 404, 10. https://doi.org/10.1016/j.jhazmat.2020.123965

    Article  CAS  Google Scholar 

  • Wu, H. W., Zheng, Y. J., Zhan, Q. Q., Dong, J., Peng, H. J., Zhai, J. G., Zhao, J. P., She, S. L., & Wu, C. (2021). Covariation between spontaneous neural activity in the insula and affective temperaments is related to sleep disturbance in individuals with major depressive disorder. Psychological Medicine, 51(5), 731–740. https://doi.org/10.1017/s0033291719003647

    Article  PubMed  Google Scholar 

  • Xu, T. Y., Wang, F. M., Xie, L. L., Yao, X. P., Zheng, J. Y., Li, J. L., & Chen, S. T. (2022). Integrating the textural and spectral information of UAV hyperspectral images for the improved estimation of rice aboveground biomass. Remote Sensing, 14(11), 21. https://doi.org/10.3390/rs14112534

    Article  Google Scholar 

  • Yang, Y. P., Luo, J. C., Huang, Q. T., Wu, W., & Sun, Y. W. (2019). Weighted double-logistic function fitting method for reconstructing the high-quality sentinel-2 NDVI time series data set. Remote Sensing, 11(20), 18. https://doi.org/10.3390/rs11202342

    Article  CAS  Google Scholar 

  • Ye, W. T., van Dijk, A., Huete, A., & Yebra, M. (2021). Global trends in vegetation seasonality in the GIMMS NDVI3g and their robustness. International Journal of Applied Earth Observation and Geoinformation, 94, 8. https://doi.org/10.1016/j.jag.2020.102238

    Article  Google Scholar 

  • Youssef, A. M., & Pourghasemi, H. R. (2021). Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geoscience Frontiers, 12(2), 639–655. https://doi.org/10.1016/j.gsf.2020.05.010

    Article  Google Scholar 

  • Yu, H., Lu, J., & Zhang, G. Q. (2022a). An online robust support vector regression for data streams. IEEE Transactions on Knowledge and Data Engineering, 34(1), 150–163. https://doi.org/10.1109/tkde.2020.2979967

    Article  Google Scholar 

  • Yu, K., Lenz-Wiedemann, V., Chen, X. P., & Bareth, G. (2014). Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects. ISPRS Journal of Photogrammetry and Remote Sensing, 97, 58–77. https://doi.org/10.1016/j.isprsjprs.2014.08.005

    Article  ADS  Google Scholar 

  • Yu, Z. Y., Zhang, X. L., Liu, H. J., Zhang, Z. C., Meng, L. H., Han, Y., & Lu, L. P. (2022b). Improving SPAD spectral estimation accuracy of rice leaves by considering the effect of leaf water content. Crop Science. https://doi.org/10.1002/csc2.20809

    Article  Google Scholar 

  • Zeydan, Ö., Tariq, S., Qayyum, F., Mehmood, U., & Ul-Haq, Z. (2023). Investigating the long-term trends in aerosol optical depth and its association with meteorological parameters and enhanced vegetation index over Turkey. Environmental Science and Pollution Research, 30(8), 20337–20356. https://doi.org/10.1007/s11356-022-23553-0

    Article  CAS  PubMed  Google Scholar 

  • Zha, H. N., Miao, Y. X., Wang, T. T., Li, Y., Zhang, J., Sun, W. C., Feng, Z. Q., & Kusnierek, K. (2020). Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sensing, 12(2), 22. https://doi.org/10.3390/rs12020215

    Article  Google Scholar 

  • Zhan, P., Zhu, W. Q., & Li, N. (2021). An automated rice mapping method based on flooding signals in synthetic aperture radar time series. Remote Sensing of Environment, 252, 13. https://doi.org/10.1016/j.rse.2020.112112

    Article  Google Scholar 

  • Zhang, W. G., Zhang, R. H., Wu, C. Z., Goh, A. T. C., & Wang, L. (2022). Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression. Underground Space, 7(2), 233–241. https://doi.org/10.1016/j.undsp.2020.03.001

    Article  Google Scholar 

  • Zhang, Z. C., & Hong, W. C. (2021). Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads. Knowledge-Based Systems, 228, 16. https://doi.org/10.1016/j.knosys.2021.107297

    Article  Google Scholar 

  • Zhang, Z., Yu, G., Wu, T., Zhang, Y., Bai, X., Yang, S., & Zhou, Y. (2021). Temperature extraction of maize canopy and crop water stress monitoring based on UAV remote sensing images. Transactions of the Chinese Society of Agricultural Engineering, 37(23), 82–89.

    Google Scholar 

  • Zhou, X., Zheng, H. B., Xu, X. Q., He, J. Y., Ge, X. K., Yao, X., Cheng, T., Zhu, Y., Cao, W. X., & Tian, Y. C. (2017). Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 246–255. https://doi.org/10.1016/j.isprsjprs.2017.05.003

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Heilongjiang Provincial Postdoctoral Science Foundation (LBH-Z22090); Heilongjiang Provincial key research and development program (2022ZX05B05); Heilongjiang Natural Science Foundation Research Team Project (TD2023E001). The authors would like to thank the technical support and useful discussions from Ruidong Wang, Chao Song, and Fangyu Guo from the planting season to the harvesting season during 2019 to 2022. Also, many thanks to lab technician Rui Guan, Longhui Niu, and Mengchen Cai for their support. We thank Jinwu Wang for the exciting discussions about results and the professional suggestions during the field experiment.

Funding

Funding was provided by Heilongjiang Provincial Postdoctoral Science Foundation (Grant No. LBH-Z22090), Heilongjiang Provincial key research and development program (Grant No. 2022ZX05B05), Heilongjiang Natural Science Foundation Research Team Project (Grant No. TD2023E001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenhua Wang or Yijia-Wang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhang, P., Wang, Z. et al. Potential of multi-seasonal vegetation indices to predict rice yield from UAV multispectral observations. Precision Agric (2024). https://doi.org/10.1007/s11119-023-10109-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11119-023-10109-6

Keywords

Navigation