Skip to main content
Log in

Senolytic treatment does not mitigate oxidative stress-induced muscle atrophy but improves muscle force generation in CuZn superoxide dismutase knockout mice

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Oxidative stress is associated with tissue dysfunctions that can lead to reduced health. Prior work has shown that oxidative stress contributes to both muscle atrophy and cellular senescence, which is a hallmark of aging that may drive in muscle atrophy and muscle contractile dysfunction. The purpose of the study was to test the hypothesis that cellular senescence contributes to muscle atrophy or weakness. To increase potential senescence in skeletal muscle, we used a model of oxidative stress-induced muscle frailty, the CuZn superoxide dismutase knockout (Sod1KO) mouse. We treated 6-month-old wildtype (WT) and Sod1KO mice with either vehicle or a senolytic treatment of combined dasatinib (5 mg/kg) + quercetin (50 mg/kg) (D + Q) for 3 consecutive days every 15 days. We continued treatment for 7 months and sacrificed the mice at 13 months of age. Treatment with D + Q did not preserve muscle mass, reduce NMJ fragmentation, or alter muscle protein synthesis in Sod1KO mice when compared to the vehicle-treated group. However, we observed an improvement in muscle-specific force generation in Sod1KO mice treated with D + Q when compared to Sod1KO-vehicle mice. Overall, these data suggest that reducing cellular senescence via D + Q is not sufficient to mitigate loss of muscle mass in a mouse model of oxidative stress-induced muscle frailty but may mitigate some aspects of oxidative stress-induced muscle dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cruz-Jentoft AJ, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Powers SK, et al. Disease-induced skeletal muscle atrophy and fatigue. Med Sci Sports Exerc. 2016;48(11):2307–19.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84(3):475–82.

    Article  CAS  PubMed  Google Scholar 

  4. Gorgoulis V, et al. Cellular senescence: defining a path forward. Cell. 2019;179(4):813–27.

    Article  CAS  PubMed  Google Scholar 

  5. Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729–40.

    Article  CAS  PubMed  Google Scholar 

  6. Dungan CM, Wells JM, Murach KA. The life and times of cellular senescence in skeletal muscle: friend or foe for homeostasis and adaptation? Am J Phys Cell Phys. 2023;325(1):C324–c331.

    CAS  Google Scholar 

  7. Gurkar AU, et al. Spatial mapping of cellular senescence: emerging challenges and opportunities. Nat Aging. 2023;3:776–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ademowo OS, et al. Lipid (per) oxidation in mitochondria: an emerging target in the ageing process? Biogerontology. 2017;18(6):859–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Palmer AK, et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell. 2019;18(3):e12950.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu M, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Basisty N, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020;18(1):e3000599.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Acosta JC, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15(8):978–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khosla S, et al. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol. 2020;16(5):263–75.

    Article  CAS  PubMed  Google Scholar 

  14. Hickson LJ, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446–56.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ogrodnik M, et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 2019;29(5):1061–1077.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farr JN, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kritsilis M, et al. Ageing, cellular senescence and neurodegenerative disease. Int J Mol Sci. 2018;19(10):2937.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baker DJ, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Solovyeva EM, et al. New insights into molecular changes in skeletal muscle aging and disease: Differential alternative splicing and senescence. Mech Ageing Dev. 2021;197:111510.

    Article  CAS  PubMed  Google Scholar 

  20. Saito Y, Chikenji TS. Diverse roles of cellular senescence in skeletal muscle inflammation, regeneration, and therapeutics. Front Pharmacol. 2021;12:739510.

  21. Alcalde-Estévez E, et al. Endothelin-1 induces cellular senescence and fibrosis in cultured myoblasts A potential mechanism of aging-related sarcopenia. Aging (Albany NY). 2020;12(12):11200–23.

    Article  PubMed  Google Scholar 

  22. Mijares A, Allen PD, Lopez JR. Senescence is associated with elevated intracellular resting [Ca(2 +)] in mice skeletal muscle fibers. An in vivo study. Front Physiol. 2020;11:601189.

    Article  PubMed  Google Scholar 

  23. Moustogiannis A, et al. The effects of muscle cell aging on myogenesis. Int J Mol Sci. 2021;22(7):3721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dungan CM, et al. Deletion of SA β-Gal+ cells using senolytics improves muscle regeneration in old mice. Aging Cell. 2022;21(1):e13528.

    Article  CAS  PubMed  Google Scholar 

  25. Cazin C, Chiche A, Li H. Evaluation of injury-induced senescence and in vivo reprogramming in the skeletal muscle. J Vis Exp. 2017;128:56201.

    Google Scholar 

  26. Zhang X, et al. Characterization of cellular senescence in aging skeletal muscle. Nat Aging. 2022;2(7):601–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guzman SD, et al. Removal of p16 (INK4) expressing cells in late life has moderate beneficial effects on skeletal muscle function in male mice. Front Aging. 2021;2:821904.

    Article  PubMed  Google Scholar 

  28. Englund DA, et al. p21 induces a senescence program and skeletal muscle dysfunction. Mol Metab. 2023;67:101652.

    Article  CAS  PubMed  Google Scholar 

  29. Liguori I, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Velarde MC, et al. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging (Albany NY). 2012;4(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  31. Lawless C, et al. A stochastic step model of replicative senescence explains ROS production rate in ageing cell populations. PLoS One. 2012;7(2):e32117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Z, Wei D, Xiao H. Methods of cellular senescence induction using oxidative stress. Methods Mol Biol. 2013;1048:135–44.

    Article  CAS  PubMed  Google Scholar 

  33. Sugihara H, et al. Oxidative stress-mediated senescence in mesenchymal progenitor cells causes the loss of their fibro/adipogenic potential and abrogates myoblast fusion. Aging (Albany NY). 2018;10(4):747–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Flynn JM, Melov S. SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med. 2013;62:4–12.

    Article  CAS  PubMed  Google Scholar 

  35. Muller FL, et al. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic Biol Med. 2006;40(11):1993–2004.

    Article  CAS  PubMed  Google Scholar 

  36. Deepa SS, et al. A new mouse model of frailty: the Cu/Zn superoxide dismutase knockout mouse. Geroscience. 2017;39(2):187–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qaisar R, et al. Restoration of SERCA ATPase prevents oxidative stress-related muscle atrophy and weakness. Redox Biol. 2019;20:68–74.

    Article  CAS  PubMed  Google Scholar 

  38. Deepa SS, et al. Accelerated sarcopenia in Cu/Zn superoxide dismutase knockout mice. Free Radic Biol Med. 2019;132:19–23.

    Article  CAS  PubMed  Google Scholar 

  39. Thadathil N, et al. Senolytic treatment reduces cell senescence and necroptosis in Sod1 knockout mice that is associated with reduced inflammation and hepatocellular carcinoma. Aging Cell. 2022;21(8):e13676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang Y, et al. A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1(-/)(-) mice is correlated to increased cellular senescence. Redox Biol. 2017;11:30–7.

    Article  CAS  PubMed  Google Scholar 

  41. Elchuri S, et al. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene. 2005;24(3):367–80.

    Article  CAS  PubMed  Google Scholar 

  42. Xu H, et al. Muscle mitochondrial catalase expression prevents neuromuscular junction disruption, atrophy, and weakness in a mouse model of accelerated sarcopenia. J Cachexia Sarcopenia Muscle. 2021;12(6):1582–96.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ahn B, et al. Scavenging mitochondrial hydrogen peroxide by peroxiredoxin 3 overexpression attenuates contractile dysfunction and muscle atrophy in a murine model of accelerated sarcopenia. Aging Cell. 2022;21(3):e13569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown JL, et al. Cancer cachexia in a mouse model of oxidative stress. J Cachexia Sarcopenia Muscle. 2020;11(6):1688–704.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xu H, et al. Modulation of sarcopenia phenotypes by glutathione peroxidase 4 overexpression in mice. J Physiol. 2023;601(23):5277–93.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu Y, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miller BF, et al. CORP: The use of deuterated water for the measurement of protein synthesis. J Appl Physiol (1985). 2020;128(5):1163–76.

    Article  CAS  PubMed  Google Scholar 

  48. Fuqua JD, et al. Impaired proteostatic mechanisms other than decreased protein synthesis limit old skeletal muscle recovery after disuse atrophy. J Cachexia Sarcopenia Muscle. 2023;5:2076–89.

    Article  Google Scholar 

  49. Abbott CB, et al. A novel stable isotope approach demonstrates surprising degree of age-related decline in skeletal muscle collagen proteostasis. Function (Oxford, England). 2021;2(4):zqab028.

    PubMed  PubMed Central  Google Scholar 

  50. Kobak KA, et al. Determining the contributions of protein synthesis and breakdown to muscle atrophy requires non-steady-state equations. J Cachexia Sarcopenia Muscle. 2021;12(6):1764–75.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kuznetsov AV, et al. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc. 2008;3(6):965–76.

    Article  CAS  PubMed  Google Scholar 

  52. Ahn B, et al. Mitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching. J Cachexia Sarcopenia Muscle. 2019;10(2):411–28.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Konopka AR, et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell. 2019;18(1):e12880.

    Article  PubMed  Google Scholar 

  54. Pharaoh G, et al. Reduced adenosine diphosphate sensitivity in skeletal muscle mitochondria increases reactive oxygen species production in mouse models of aging and oxidative stress but not denervation. JCSM Rapid Commun. 2021;4(1):75–89.

    Article  PubMed  Google Scholar 

  55. Xu H, Ahn B, Van Remmen H. Impact of aging and oxidative stress on specific components of excitation contraction coupling in regulating force generation. Sci Adv. 2022;8(43):eadd7377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brown JL, et al. Tumor burden negatively impacts protein turnover as a proteostatic process in noncancerous liver, heart, and muscle, but not brain. J Appl Physiol (1985). 2021;131(1):72–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Drake JC, et al. Long-lived crowded-litter mice have an age-dependent increase in protein synthesis to DNA synthesis ratio and mTORC1 substrate phosphorylation. Am J Physiol Endocrinol Metab. 2014;307(9):E813–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bhaskaran S, et al. Neuron-specific deletion of CuZnSOD leads to an advanced sarcopenic phenotype in older mice. Aging Cell. 2020;19(10):e13225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ogrodnik M, et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 2017;8:15691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ogrodnik M, et al. Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell. 2021;20(2):e13296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Robbins PD, et al. Senolytic drugs: reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol. 2021;61:779–803.

    Article  CAS  PubMed  Google Scholar 

  62. Liu L, et al. Senolytic elimination of senescent macrophages restores muscle stem cell function in severely dystrophic muscle. Aging (Albany NY). 2022;14(19):7650–61.

    Article  PubMed  Google Scholar 

  63. Sataranatarajan K, et al. Molecular changes in transcription and metabolic pathways underlying muscle atrophy in the CuZnSOD null mouse model of sarcopenia. Geroscience. 2020;42(4):1101–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Burke SK, et al. Variation in muscle and neuromuscular junction morphology between atrophy-resistant and atrophy-prone muscles supports failed re-innervation in aging muscle atrophy. Exp Gerontol. 2021;156:111613.

    Article  CAS  PubMed  Google Scholar 

  65. Spendiff S, et al. Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol. 2016;594(24):7361–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Larkin LM, et al. Skeletal muscle weakness due to deficiency of CuZn-superoxide dismutase is associated with loss of functional innervation. Am J Phys Regul Integr Comp Phys. 2011;301(5):R1400–7.

    CAS  Google Scholar 

  67. Yoshihara T, et al. Exercise preconditioning attenuates hind limb unloading-induced gastrocnemius muscle atrophy possibly via the HDAC4/Gadd45 axis in old rats. Exp Gerontol. 2019;122:34–41.

    Article  CAS  PubMed  Google Scholar 

  68. Bongers KS, et al. Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4. Am J Physiol Endocrinol Metab. 2013;305(7):E907–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zaidi MR, Liebermann DA. Gadd45 in senescence. Adv Exp Med Biol. 2022;1360:109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wiley CD, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23(2):303–14.

    Article  CAS  PubMed  Google Scholar 

  71. Martini H, Passos JF. Cellular senescence: all roads lead to mitochondria. FEBS J. 2023;290(5):1186–202.

    Article  CAS  PubMed  Google Scholar 

  72. Yoon YS, et al. Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J Cell Physiol. 2006;209(2):468–80.

    Article  CAS  PubMed  Google Scholar 

  73. Passos JF, et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007;5(5):e110.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Manzella N, et al. Monoamine oxidase-A is a novel driver of stress-induced premature senescence through inhibition of parkin-mediated mitophagy. Aging Cell. 2018;17(5):e12811.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Correia-Melo C, et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016;35(7):724–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Takahashi Y, et al. Reduction of superoxide dismutase 1 delays regeneration of cardiotoxin-injured skeletal muscle in KK/Ta-Ins2(Akita) mice with progressive diabetic nephropathy. Int J Mol Sci. 2021;22(11)

  77. Nagahisa H, et al. Characteristics of skeletal muscle fibers of SOD1 knockout mice. Oxidative Med Cell Longev. 2016;2016:9345970.

    Article  Google Scholar 

  78. Su Y, et al. Deletion of neuronal CuZnSOD accelerates age-associated muscle mitochondria and calcium handling dysfunction that is independent of denervation and precedes sarcopenia. Int J Mol Sci. 2021;22(19):10735.

Download references

Acknowledgements

We would like to extend our gratitude to the numerous other faculties, staff, and other researchers at the Oklahoma City VA, Oklahoma Medical Research Foundation, and OUHSC for helpful discussions. Elizabeth Duggan helped with experiments for the resubmission. Some illustrations were created with BioRender.com.

Funding

Support for this work has been provided by the National Institute on Aging P01AG051442. Dr. Van Remmen is the recipient of a VA Senior Research Career Scientist award (1 IK6 BX005234). Dr. Jacob L. Brown’s postdoctoral training was supported by NIA T32 AG052363. Dr. Jacob L. Brown is currently supported by a VA Career Development Award (1 IK2 BX005620-01A1). Dr. Marcus M. Lawrence’s postdoctoral training was supported by an American Physiological Society (APS) Postdoctoral Fellowship. Dr. Benjamin F. Miller was supported by VA I01 BX005592. Arlan Richardson was supported by a VA Senior Career Research Awards (1IK6BX005238) and a VA Merit grant (I01BX004538) from the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob L. Brown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Disclaimer

Contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the NIH and the Department of Veteran Affairs.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borowik, A.K., Lawrence, M.M., Peelor, F.F. et al. Senolytic treatment does not mitigate oxidative stress-induced muscle atrophy but improves muscle force generation in CuZn superoxide dismutase knockout mice. GeroScience 46, 3219–3233 (2024). https://doi.org/10.1007/s11357-024-01070-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-024-01070-x

Keywords

Navigation