Skip to main content
Log in

The magmatic origin of propylitic alteration of the Zhengguang epithermal Au-Zn deposit, Heilongjiang, China: evidence from mineral compositions and H–O-Sr isotopes

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The origin of propylitic fluids in intermediate sulfidation mineralization has not been investigated in detail. Here, we present an extensive petrographic, geochemical, and isotopic (O-H-Sr) study of propylitic epidote, chlorite, and calcite from the Zhengguang intermediate sulfidation epithermal Au-Zn deposit, NE China. Propylitic minerals can be divided into three main types based on their different textural occurrences, namely interstitial cement of clasts of hydrothermal breccia, replacement of primary plagioclase or hornblende, and vein infill of cracks, with late, minor calcite as amygdules in vesicles of andesite representing a fourth textural occurrence. The H-O isotope compositions and mass balance calculations suggest that most propylitic epidote records a dominant (> 50%) contribution of magmatic fluids. The decrease of the average δ18\({\mathrm O}_{{\mathrm H}_2\mathrm O}\;\)values equilibrated with different types of epidote (cement 6.8 ± 0.7‰, replacement 5.1 ± 1.1‰, vein 4.5 ± 1.4‰, 1 SD), and the decreasing content of high-temperature elements (e.g., Cu-Mo) from cement, through replacement to vein epidote and chlorite, collectively indicates a decreasing role of magmatic fluids. Replacement epidote and chlorite are enriched in Sr-Mn-Y-Sb, whereas replacement epidote and calcite record similar (87Sr/86Sr)i values to the andesitic host rock, suggesting that replacement minerals inherit certain elements from plagioclase and hornblende, and the Sr isotope signature of the wall rocks. We highlight that propylitic alteration in epithermal deposits can involve significant proportions of magmatic fluids and texturally different alteration mineral types should be considered when using mineral isotopic or chemical compositions to track fluid sources or to vector towards the location of intrusive centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahmed AD, Fisher L, Pearce M, Escolme A, Cooke DR, Howard D, Belousov I (2020) A microscale analysis of hydrothermal epidote: implications for the use of laser ablation-inductively coupled plasma-mass spectrometry mineral chemistry in complex alteration environments. Econ Geol 115:793–811

    Article  Google Scholar 

  • Audétat A (2019) The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. Econ Geol 114(6):1033–1056

    Article  Google Scholar 

  • Baker MJ, Wilkinson JJ, Wilkinson CC, Cooke DR, Ireland T (2020) Epidote trace element chemistry as an exploration tool in the Collahuasi district, northern Chile. Econ Geol 115:749–770

    Article  Google Scholar 

  • Ballantyne GH (1981) Chemical and mineralogical variations in propylitic zones surrounding porphyry copper deposits. Ph.D. thesis, University of Utah, 208 p

  • Barnes CG, Memmeti V, Coint N (2016) Deciphering magmatic processes in calc-alkaline plutons using trace element zoning in hornblende. Am Miner 101:328–342

    Article  Google Scholar 

  • Becker GF (1882) Geology of the Comstock Lode and the Washoe District, with Atlas (vol 3). US Government Printing Office, Washington, 422 p

  • Bons PD, Elburg MA, Gomez-Rivas E (2012) A review of the formation of tectonic veins and their microstructures. J Struct Geol 43:33–62

    Article  Google Scholar 

  • Bowman JR, Parry WT, Kropp WP, Kruer SA (1987) Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah. Econ Geol 82:395–428

    Article  Google Scholar 

  • Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519

    Article  Google Scholar 

  • Burnham CW (1985) Energy release in subvolcanic environments: implications for breccia formation. Econ Geol 80(6):1515–1522

    Article  Google Scholar 

  • Cai WY, Wang KY, Li J, Fu LJ, Lai CK, Liu HL (2021) Geology, geochronology and geochemistry of large Duobaoshan Cu–Mo–Au orefield in NE China: magma genesis and regional tectonic implications. Geosci Front 12:265–292

    Article  Google Scholar 

  • Cao MJ, Hollings P, Evans NJ, Cooke DR, McInnes BI, Zhao KD, Qin KZ, Li DF, Sweet G (2020) In situ elemental and Sr isotope characteristics of magmatic to hydrothermal minerals from the Black Mountain porphyry deposit, Baguio district, Philippines. Econ Geol 115:927–944

    Article  Google Scholar 

  • Cathles LM (1991) The importance of vein selvaging in controlling the intensity and character of subsurface alteration in hydrothermal systems. Econ Geol 86:466–471

    Article  Google Scholar 

  • Chacko T, Riciputi R, Cole R, Horita J (1999) A new technique for determining equilibrium hydrogen isotope fractionation factors using the ion microprobe: application to the epidote-water system. Geochim Cosmochim Acta 63:1–10

    Article  Google Scholar 

  • Cooke DR, Baker M, Hollings P, Sweet G, Chang Z, Danyushevsky L, Gilbert S, Zhou T, White NC, Gemmell JB, Inglis S (2014) New advances in detecting the distal geochemical footprints of porphyry systems—epidote mineral chemistry as a tool for vectoring and fertility assessments. Soc Econ Geol Spec Publ 18:127–152

    Google Scholar 

  • Cooke DR, Wilkinson JJ, Baker M, Agnew P, Phillips J, Chang Z, Chen H, Wilkinson CC, Inglis S, Hollings P, Zhang L, Gemmell JB, White NC, Danyushevsky L, Martin H (2020) Using mineral chemistry to aid exploration. A case study from the Resolution porphyry Cu-Mo deposit, Arizona. Econ Geol 115:813–840

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1986) Rock-forming minerals, Vol 1B, Disilicates and Ring Silicates. 2nd edn. New York, Longman, p 629

  • Dilles JH, Solomon GC, Taylor HP, Einaudi MT (1992) Oxygen and hydrogen isotope characteristics of hydrothermal alteration at the Ann-Mason porphyry copper deposit, Yerington, Nevada. Econ Geol 87(1):44–63

    Article  Google Scholar 

  • Dollase WA (1971) Refinement of the crystal structures of epidote, allanite and hancockite. Am Min 56(3–4):447–464

    Google Scholar 

  • Domeier M (2018) Early Paleozoic tectonics of Asia: towards a full-plate model. Geosci Front 9:789–862

    Article  Google Scholar 

  • Farmer GL, DePaolo DJ (1987) Nd and Sr isotope study of hydrothermally altered granite at San Manuel, Arizona; implications for element migration paths during the formation of porphyry copper ore deposits. Econ Geol 82:1142–1151

    Article  Google Scholar 

  • Faure K (2003) δD values of fluid inclusion water in quartz and calcite ejecta from active geothermal systems: do values reflect those of original hydrothermal water? Econ Geol 98:657–660

    Google Scholar 

  • Feng XH, Faiia AM, Posmentier ES (2009) Seasonality of isotopes in precipitation: a global perspective. J Geophys Res: Atmos 114:1–13

    Google Scholar 

  • Foster MD (1962) Interpretation of the composition and a classification of the chlorites: U.S. Govt. Print. Off., Geologic Survey Professional Paper 414-A. Accessed on 24 Oct 2021 at https://pubs.er.usgs.gov/publication/pp414A

  • Frei D, Liebscher A, Franz G, Dulski P (2004) Trace element geochemistry of epidote minerals. Rev Mineral Geochem 56:553–605

    Article  Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest (Vol. 440). In: Fleischer M (ed) Data of geochemistry, 6th ed. Washington, US Government Printing Office, pp KK1-KK12

  • Gao S, Hofstra AH, Zou X, Valley JW, Kitajima K, Marsh EE, Lowers HA, Adams DT, Qin KZ, Xu H (2021) Oxygen isotope evidence for input of magmatic fluids and precipitation of Au-Ag-tellurides in an otherwise ordinary adularia-sericite epithermal system in NE China. Am Miner 106:2003–2019

    Article  Google Scholar 

  • Gieré R, Sorensen SS (2004) Allanite and other REE-rich epidote-group minerals. Rev Mineral Geochem 56:431–493

    Article  Google Scholar 

  • Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857–912

    Article  Google Scholar 

  • Hedenquist JW (1990) The thermal and geochemical structure of the Broadlands-Ohaaki geothermal system, New Zealand. Geothermics 19:151–185

    Article  Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Article  Google Scholar 

  • Hey MH (1954) A new review of the chlorites. Mineral Mag 30:277–292

    Google Scholar 

  • Hillier ST, Velde B (1991) Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Miner 26:149–168

    Article  Google Scholar 

  • Hu X, Yao S, Ding Z, He M (2017) Early Paleozoic magmatism and metallogeny in Northeast China: a record from the Tongshan porphyry Cu deposit. Miner Deposita 52:85–103

    Article  Google Scholar 

  • Jaffrés JB, Shields GA, Wallmann K (2007) The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci Rev 83:83–122

    Article  Google Scholar 

  • Jowett EC (1991) Fitting iron and magnesium into the hydrothermal chlorite geothermometer. Geological Association of Canada/Mineralogical Association of Canada/Society of Economic Geologists Joint Annual Meeting, Toronto, May 27–29, (1991) Program with Abstracts, 16:A62

  • Keith M, Haase KM, Chivas AR, Klemd R (2022) Phase separation and fluid mixing revealed by trace element signatures in pyrite from porphyry systems. Geochim Cosmochim Acta 329:185–205

    Article  Google Scholar 

  • Kouzmanov K, Pokrovski (2012) Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems. Soc Econ Geol Spec Publ 16:573–618

    Google Scholar 

  • Lécuyer C, Gillet P, Robert F (1998) The hydrogen isotope composition of seawater and the global water cycle. Chem Geol 145:249–261

    Article  Google Scholar 

  • Li W, Cook NJ, Xie GQ, Mao JW, Ciobanu CL, Fu B (2021) Complementary textural, trace element, and isotopic analyses of sulfides constrain ore-forming processes for the slate-hosted Yuhengtang Au deposit, South China. Econ Geol 116:1825–1848

    Article  Google Scholar 

  • Norman DK, Parry WT, Bowman JR (1991) Petrology and geochemistry of propylitic alteration at Southwest Tintic, Utah. Econ Geol 86:13–28

    Article  Google Scholar 

  • Pacey A, Wilkinson JJ, Boyce AJ, Millar IL (2020a) Magmatic fluids implicated in the formation of propylitic alteration: oxygen, hydrogen, and strontium isotope constraints from the Northparkes porphyry Cu-Au district, New South Wales, Australia. Econ Geol 115:729–748

    Article  Google Scholar 

  • Pacey A, Wilkinson JJ, Cooke DR (2020b) Chlorite and epidote mineral chemistry in porphyry ore systems: a case study of the Northparkes district, New South Wales, Australia. Econ Geol 115:701–727

    Article  Google Scholar 

  • Palarea-Albaladejo J, Martín-Fernández JA (2013) Values below detection limit in compositional chemical data. Anal Chim Acta 764:32–43

    Article  Google Scholar 

  • Palme H, O’Neill HS (2014) Cosmochemical estimates of mantle composition. Treatise on Geochemistry. Elsevier-Pergamon, Oxford, pp 1–39

    Google Scholar 

  • Pang XY, Qin KZ, Wang L, Song GX, Li GM, Su SQ, Zhao C (2017) Deformation characteristics of the Tongshan fault within Tongshan porphyry copper deposit, Heilongjiang Province, and restoration of alteration zones and ore bodies. Acta Petrol Sin 33:398–414 (in Chinese with English abstract)

    Google Scholar 

  • Pang XY (2017) Identification of concealed intrusive-hydrothermal center and ore-controlling structure study of the Early Paleozoic Tongshan porphyry copper deposit in eastern section of Central Asian Orogenic Belt. Ph.D. thesis, University of Chinese Academy of Sciences, 177 p (in Chinese with English abstract)

  • Pope EC (2011) Hydrogen and oxygen isotope fractionation in hydrous minerals as indicators of fluid source in modern and fossil metasomatic environments. Ph.D. thesis, Stanford University, 225 p

  • Proffett JM (2003) Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina. Econ Geol 98:1535–1574

    Article  Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70:87–124

    Article  Google Scholar 

  • Qin K, Cao M, Hollings P, Watanabe Y (2022) The metallogenic system deep structure and formation process for the northeastern china compound orogenic belt: Introduction. Ore Geol Rev 146:104960

    Article  Google Scholar 

  • Reed M, Rusk B, Palandri J (2013) The Butte magmatic-hydrothermal system: one fluid yields all alteration and veins. Econ Geol 108(6):1379–1396

    Article  Google Scholar 

  • Reyes AG (1990) Petrology of Philippines geothermal systems and the application of alteration mineralogy of their assessment. J Volcanol Geoth Res 43:279–309

    Article  Google Scholar 

  • Rhys DA, Lewis PD, Rowland JV (2020) Structural controls on ore localization in epithermal gold-silver deposits: a mineral systems approach. Rev Econ Geol 21:83–145

    Google Scholar 

  • Ruiz-Agudo E, Putnis CV, Putnis A (2014) Coupled dissolution and precipitation at mineral–fluid interfaces. Chem Geol 383:132–146

    Article  Google Scholar 

  • Sacchi E, Cuoco E, Oster H, Paolucci V, Tedesco D, Viaroli S (2022) Tracing groundwater circulation in a valuable mineral water basin with geochemical and isotopic tools: the case of FERRARELLE, Riardo basin, Southern Italy. Environ Geochem Health 44:1–28

    Article  Google Scholar 

  • Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJ, Johnson DA, Barton MD (2005) Porphyry deposits: characteristics and origin of hypogene features. Economic Geology 100th Anniversary Volume:251–298

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A: Cryst Phys Diffract Theor Gen Crystallogr 32(5):751–767

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Soloviev SG, Kryazhev SG, Dvurechenskaya SS (2013) Geology, mineralization, stable isotope geochemistry, and fluid inclusion characteristics of the Novogodnee-Monto oxidized Au–(Cu) skarn and porphyry deposit, Polar Ural, Russia. Miner Deposita 48:603–627

    Article  Google Scholar 

  • Song GX, Qin KZ, Wang L, Guo JH, Li ZZ, Tong KY, Zou XY, Li GM (2015) Type, zircon U-Pb age and Paleo-volcanic edifice of Zhengguang gold deposit in Duobaoshan ore field in Heilongjiang Province, NE-China. Acta Petrol Sin 31:2402–2416 (in Chinese with English abstract)

    Google Scholar 

  • Steiner AP, Hickey KA (2023) Fluid partitioning between veins/fractures and the host rocks in Carlin-type Au deposits: a significant control on fluid-rock interaction and Au endowment. Miner Deposita 58:797–823

    Article  Google Scholar 

  • Sweet G (2012) Magmatic evolution and alteration geochemistry of the Black Mountain Southeast porphyry copper-gold deposit, Baguio mineral district, Luzon, Philippines: Unpublished M.Sc. thesis, Thunder Bay, Canada, Lakehead University, 188 p

  • Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69:843–883

    Article  Google Scholar 

  • Taylor BE (1992) Degassing of H2O from rhyolite magma during eruption and shallow intrusion, and the isotopic composition of magmatic water in hydrothermal system. In: Hedenquist JW (ed) Extended Abstracts, Japan-U.S. Symposium on Magmatic Contributions to Hydrothermal Systems. Geological Survey of Japan Report 279:190–194

  • Ulrich T, Günther D, Heinrich CA (1999) Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 399:676–679

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GA, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  Google Scholar 

  • Wang L, Qin KZ, Pang XY, Song GX, Jin LY, Li GM, Zhao C (2017) Geological characteristics and alteration zonation of Tongshan porphyry copper deposit within Duobaoshan ore field, Heilongjiang: implications for hydrothermal-mineralization center and further exploration. Mineral Deposits 36:1143–1168 (in Chinese with English abstract)

    Google Scholar 

  • Wang L, Qin KZ, Song GX, Pang XY, Li ZZ, Zhao C, Jin LY, Zou XY, Li GM (2018) Volcanic-subvolcanic rocks and tectonic setting of the Zhengguang intermediate sulfidation epithermal Au-Zn deposit, eastern Central Asian Orogenic Belt, NE China. J Asian Earth Sci 165:328–351

    Article  Google Scholar 

  • Wang L, Qin KZ, Song GX, Li GM (2019) A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geol Rev 107:434–456

    Article  Google Scholar 

  • Wang L, Qin KZ, Song GX, Pang XY, Li GM, Zou XY (2020a) Geology and genesis of the Early Paleozoic Zhengguang intermediate-sulfidation epithermal Au-Zn deposit, northeast China. Ore Geol Rev 124:103602

    Article  Google Scholar 

  • Wang L, Qin KZ, Cao MJ, Danišík M, Evans NJ, Li GM, Song GX, Pang XY (2020b) Thermal history of an Early Paleozoic epithermal deposit: constraints from 40Ar/39Ar and (U–Th)/He thermochronology at Zhengguang, eastern Central Asian Orogenic Belt. Ore Geol Rev 126:103791

    Article  Google Scholar 

  • Wang L, Percival JB, Hedenquist JW, Hattori K, Qin KZ (2021) Alteration mineralogy of the Zhengguang epithermal Au-Zn deposit, Northeast China: interpretation of shortwave infrared analyses during mineral exploration and assessment. Econ Geol 116:389–406

    Article  Google Scholar 

  • Wilkinson JJ, Chang Z, Cooke DR, Baker MJ, Wilkinson CC, Inglis S, Chen H, Gemmell JB (2015) The chlorite proximitor: a new tool for detecting porphyry ore deposits. J Geochem Explor 152:10–26

    Article  Google Scholar 

  • Wilkinson JJ, Baker MJ, Cooke DR, Wilkinson CC (2020) Exploration targeting in porphyry Cu systems using propylitic mineral chemistry: a case study of the El Teniente deposit, Chile. Econ Geol 115:771–791

    Article  Google Scholar 

  • Wu G, Liu J, Zhong W, Zhu MT, Mei M, Wan Q (2009) Fluid inclusion study of the Tongshan porphyry copper deposit, Heilongjiang province, China. Acta Petrol Sin 25:2995–3006 (in Chinese with English abstract)

    Google Scholar 

  • Xiao B, Chen H (2020) Elemental behavior during chlorite alteration: new insights from a combined EMPA and LA-ICPMS study in porphyry Cu systems. Chem Geol 543:119604

    Article  Google Scholar 

  • Xiao B, Chen H, Wang Y, Han J, Xu C, Yang J (2018) Chlorite and epidote chemistry of the Yandong Cu deposit, NW China: metallogenic and exploration implications for Paleozoic porphyry Cu systems in the Eastern Tianshan. Ore Geol Rev 100:168–182

    Article  Google Scholar 

  • Yang Z, Hou Z, White NC, Chang Z, Li Z, Song Y (2009) Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong, Tibet. Ore Geol Rev 36:133–159

    Article  Google Scholar 

  • Yang YH, Wu FY, Yang JH, Chew DM, Xie LW, Chu ZY, Zhang YB, Huang C (2014) Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology. Chem Geol 385:35–55

    Article  Google Scholar 

  • Zane A, Weiss Z (1998) A procedure for classifying rock-forming chlorites based on microprobe data. Rend Lincei-Sci Fis Nat 9:51–56

    Article  Google Scholar 

  • Zeng QD, Liu JM, Chu SX, Wang YB, Sun Y, Duan XX, Zhou LL, Qu WJ (2014) Re-Os and U-Pb geochronology of the Duobaoshan porphyry Cu-Mo-(Au) deposit, northeast China, and its geological significance. J Asian Earth Sci 79:895–909

    Article  Google Scholar 

  • Zhang LG, Liu JX, Zhou HB, Chen ZS (1989) Oxygen isotope fractionation in the quartz-water-salt system. Econ Geol 84:1643–1650

    Article  Google Scholar 

  • Zhao C, Qin KZ, Song GX, Li GM, Li ZZ, Pang XY, Wang L (2018) Petrogenesis and tectonic setting of ore-related porphyry in the Duobaoshan Cu deposit within the eastern Central Asian Orogenic Belt, Heilongjiang Province, NE China. J Asian Earth Sci 165:352–370

    Article  Google Scholar 

  • Zhao C, Qin KZ, Song GX, Li GM, Li ZZ (2019) Early Palaeozoic high-Mg basalt-andesite suite in the Duobaoshan Porphyry Cu deposit, NE China: constraints on petrogenesis, mineralization, and tectonic setting. Gondwana Res 71:91–116

    Article  Google Scholar 

  • Zheng YF (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochim Cosmochim Acta 55:2299–2307

    Article  Google Scholar 

  • Zheng YF (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 120:247–263

    Article  Google Scholar 

Download references

Acknowledgements

Rui Liu, Ji-Hai Guo, Hai-Jun Liang, and Kuang-Yin Tong are thanked for arranging logistical support during field work, as are Chao Zhao, Zhen-Zhen Li, Lu-Ying Jin, Shi-Qiang Su, and Li Li, for their help during field work. We acknowledge Han-Bin Liu for help with H-O isotope analyses; Chao Huang, Yue-Heng Yang, and Chang-Tong He for assistance with Sr isotope analyses; Li-Hui Jia and Di Zhang for assistance with EPMA analysis; and Yan-Wen Tang, Jun-Hao Hu, and Shi-Tou Wu for help with the LA-ICP-MS analyses. LW appreciates the discussion with An-Ping Chen, Urs Schaltegger, Christian Verard, and Martin Senger. We thank Bing Xiao and Manuel Keith for constructive reviews, and Editor-in-Chief Bernd Lehmann and Associate Editor De-Gao Zhai for handling. An informal review by Jeff Hedenquist and comments from Lang Farmer and Adam Pacey on an early version of this manuscript are much appreciated.

Funding

This study was jointly supported by the National Natural Science Foundation of China (42202085, 42122013, 42272080, 41802110), China Postdoctoral Science Foundation (2020M680666, 2021T140660), postdoctoral program of China Scholarship Council (202104910161), and National Key Research and Development Program of China (2017YFC0601306).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (LW, KZQ); fieldwork (LW, KZQ, XYZ, GXS, XYP); petrography (LW, XYZ, GXS, XYP); analytical work (LW, MJC); interpretation (LW, MJC, SG, MC, PH, KZQ, XYZ); writing (LW); revising (LW, MC, PH, GXS, XYP, GML).

Corresponding authors

Correspondence to Le Wang or Ke-Zhang Qin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Editorial handling: D. Zhai

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17145 KB)

Supplementary file2 (XLSX 1026 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Cao, MJ., Gao, S. et al. The magmatic origin of propylitic alteration of the Zhengguang epithermal Au-Zn deposit, Heilongjiang, China: evidence from mineral compositions and H–O-Sr isotopes. Miner Deposita (2024). https://doi.org/10.1007/s00126-023-01243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00126-023-01243-2

Keywords

Navigation