Skip to main content
Log in

METTL3 Modulates TXNIP Expression to Affect the Activation of NLRP3 Inflammasome in Hepatic Cells Under Oxygen–Glucose Deprivation/Reperfusion Injury

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Hepatic ischemia–reperfusion (I/R) injury is still a major risk factor and unsolved problem in hepatic surgery. Methyltransferase-like 3 (METTL3), an important m6A-modified methylase, regulates inflammation and cellular stress response. In this study, we demonstrated the special role of METTL3 and its underlying mechanism in hepatic I/R injury. In the mouse model of hepatic I/R and in the oxygen–glucose deprivation and reoxygenation (OGD/R)-induced AML12 and NCTC 1469 cells, the expression of METTL3 was significantly upregulated. Inhibition of METTL3 in OGD/R-induced AML12 and NCTC 1469 cells both increased the cell viability, declined the cell apoptosis, and decreased the reactive oxygen species (ROS) and the release levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18), diminishing NLRP3 and Caspase1-p20 expressions. Moreover, METTL3 positively modulated TXNIP expression in an m6A manner. TXNIP overexpression reversed the effects of METTL3 knockdown on OGD/R-induced injury in AML12 cells. Furthermore, inhibition of NLRP3 inflammasome activity contributed to the protective effects of TXNIP knockdown in OGD/R-induced AML12 cells. In conclusion, METTL3 knockdown alleviated OGD/R-induced hepatocyte injury, and the specific mechanism was associated with the inhibition of NLRP3 inflammasome activation, which was attributed to the reduction of TXNIP in an m6A-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The dataset supporting the conclusions of this article is included within the article.

References

  1. Hirao, H., K. Nakamura, and J.W. Kupiec-Weglinski. 2022. Liver ischaemia-reperfusion injury: A new understanding of the role of innate immunity. Nature Reviews. Gastroenterology & Hepatology 19 (4): 239–256.

    Article  CAS  Google Scholar 

  2. Rampes, S., and D. Ma. 2019. Hepatic ischemia-reperfusion injury in liver transplant setting: Mechanisms and protective strategies. Journal of Biomedical Research 33 (4): 221–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhai, Y., R.W. Busuttil, and J.W. Kupiec-Weglinski. 2011. Liver ischemia and reperfusion injury: New insights into mechanisms of innate-adaptive immune-mediated tissue inflammation. American Journal of Transplantation 11 (8): 1563–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, M.Y., G.T. Yiang, W.T. Liao, A.P. Tsai, Y.L. Cheng, P.W. Cheng, C.Y. Li, and C.J. Li. 2018. Current mechanistic concepts in ischemia and reperfusion injury. Cellular Physiology and Biochemistry 46 (4): 1650–1667.

    Article  CAS  PubMed  Google Scholar 

  5. Prieto, I., and M. Monsalve. 2017. ROS homeostasis, a key determinant in liver ischemic-preconditioning. Redox Biology 12: 1020–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rong, D., F. Wu, C. Lu, G. Sun, X. Shi, X. Chen, Y. Dai, W. Zhong, X. Hao, J. Zhou, et al. 2021. m6A modification of circHPS5 and hepatocellular carcinoma progression through HMGA2 expression. Molecular Therapy Nucleic Acids 26: 637–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barbieri, I., K. Tzelepis, L. Pandolfini, J. Shi, G. Millan-Zambrano, S.C. Robson, D. Aspris, V. Migliori, A.J. Bannister, N. Han, et al. 2017. Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature 552 (7683): 126–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, Y., C. Peng, J. Chen, D. Chen, B. Yang, B. He, W. Hu, Y. Zhang, H. Liu, L. Dai, et al. 2019. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Molecular Cancer 18 (1): 127.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zheng, G., J.A. Dahl, Y. Niu, P. Fedorcsak, C.M. Huang, C.J. Li, C.B. Vagbo, Y. Shi, W.L. Wang, S.H. Song, et al. 2013. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Molecular Cell 49 (1): 18–29.

    Article  CAS  PubMed  Google Scholar 

  10. Gallagher, E.J., and D. LeRoith. 2015. Obesity and diabetes: The increased risk of cancer and cancer-related mortality. Physiological Reviews 95 (3): 727–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, X., C. Yu, M. Guo, X. Zheng, S. Ali, H. Huang, L. Zhang, S. Wang, Y. Huang, S. Qie, et al. 2019. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death. ACS Chemical Neuroscience 10 (5): 2355–2363.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, S., C. Sun, J. Li, E. Zhang, Z. Ma, W. Xu, H. Li, M. Qiu, Y. Xu, W. Xia, et al. 2017. Roles of RNA methylation by means of N(6)-methyladenosine (m(6)A) in human cancers. Cancer Letters 408: 112–120.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J.N., F. Wang, J Ke, Z. Li, C.H. Xu, Q. Yang, X. Chen, X.Y. He, Y. He, X.H. Suo, et al. 2022. Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms. Science Translational Medicine 14(640):eabk2709.

  14. Xiang, S., Y. Wang, D. Lei, Y. Luo, D. Peng, K. Zong, Y. Liu, Z. Huang, S. Mo, X. Pu, et al. 2023. Donor graft METTL3 gene transfer ameliorates rat liver transplantation ischemia-reperfusion injury by enhancing HO-1 expression in an m(6)A-dependent manner. Clinical Immunology (Orlando, Fla) 251.

  15. Li, J., Z. Yue, W. Xiong, P. Sun, K. You, and J. Wang. 2017. TXNIP overexpression suppresses proliferation and induces apoptosis in SMMC7221 cells through ROS generation and MAPK pathway activation. Oncology Reports 37 (6): 3369–3376.

    Article  CAS  PubMed  Google Scholar 

  16. Park, J.W., S.H. Lee, G.H. Woo, H.J. Kwon, and D.Y. Kim. 2018. Downregulation of TXNIP leads to high proliferative activity and estrogen-dependent cell growth in breast cancer. Biochemical and Biophysical Research Communications 498 (3): 566–572.

    Article  CAS  PubMed  Google Scholar 

  17. Szpigel, A., I. Hainault, A. Carlier, N. Venteclef, A.F. Batto, E. Hajduch, C. Bernard, A. Ktorza, J.F. Gautier, P. Ferre, et al. 2018. Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia 61 (2): 399–412.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology 11 (2): 136–140.

    Article  CAS  PubMed  Google Scholar 

  19. Anthony, T.G., and R.C. Wek. 2012. TXNIP switches tracks toward a terminal UPR. Cell Metabolism 16 (2): 135–137.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y., L.S. Miao, Y.M. Cai, J.X. He, Z.N. Zhang, G. Wu, and J. Zheng. 2018. TXNIP knockdown alleviates hepatocyte ischemia reperfusion injury through preventing p38/JNK pathway activation. Biochemical and Biophysical Research Communications 502 (3): 409–414.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, B.F., and J. Yoshioka. 2017. The emerging role of thioredoxin-interacting protein in myocardial ischemia/reperfusion injury. Journal of Cardiovascular Pharmacology and Therapeutics 22 (3): 219–229.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, G.S., J.E. Jung, P. Narasimhan, H. Sakata, and P.H. Chan. 2012. Induction of thioredoxin-interacting protein is mediated by oxidative stress, calcium, and glucose after brain injury in mice. Neurobiology of Diseases 46 (2): 440–449.

    Article  CAS  Google Scholar 

  23. Jia, Y., R. Cui, C. Wang, Y. Feng, Z. Li, Y. Tong, K. Qu, C. Liu, and J. Zhang. 2020. Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biology 32: 101534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abe, Y., I.N. Hines, G. Zibari, K. Pavlick, L. Gray, Y. Kitagawa, and M.B. Grisham. 2009. Mouse model of liver ischemia and reperfusion injury: Method for studying reactive oxygen and nitrogen metabolites in vivo. Free Radical Biology & Medicine 46 (1): 1–7.

    Article  CAS  Google Scholar 

  25. Zhong, W., Z. Rao, J. Rao, G. Han, P. Wang, T. Jiang, X. Pan, S. Zhou, H. Zhou, and X. Wang. 2020. Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated NLRP3 activation in macrophages. Aging Cell 19 (8): e13186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vilalva, K.H., F.T. Mumic, M.R.G. Silveira, E.D. Mente, P.R.B. Evora, and E.S.O. Castro. 2018. Use of methylene blue to treat hypovolemic shock followed by ischemia-reperfusion injury in the postoperative orthotopic liver transplant patient: A case report. Experimental and Clinical Transplantation 16 (4): 511–514.

    PubMed  Google Scholar 

  27. Cao, Q., R. Wang, Y. Wang, Z. Niu, T. Chen, C. Wang, L. Jin, Q. Huang, Q. Li, X.M. Wang, et al. 2020. Regulatory innate lymphoid cells suppress innate immunity and reduce renal ischemia/reperfusion injury. Kidney International 97 (1): 130–142.

    Article  CAS  PubMed  Google Scholar 

  28. Xu, S., B. Wu, B. Zhong, L. Lin, Y. Ding, X. Jin, Z. Huang, M. Lin, H. Wu, and D. Xu. 2021. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) /System xc-/ glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered 12 (2): 10924–10934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calabrese, D.R., E. Aminian, B. Mallavia, F. Liu, S.J. Cleary, O.A. Aguilar, P. Wang, J.P. Singer, S.R. Hays, J.A. Golden, et al. 2021. Natural killer cells activated through NKG2D mediate lung ischemia-reperfusion injury. The Journal of Clinical Investigation 131(3).

  30. Liu, J., X. Dou, C. Chen, C. Chen, C. Liu, M.M. Xu, S. Zhao, B. Shen, Y. Gao, D. Han, et al. 2020. N (6)-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science (New York, NY) 367 (6477): 580–586.

    Article  CAS  Google Scholar 

  31. Jiang, X., B. Liu, Z. Nie, L. Duan, Q. Xiong, Z. Jin, C. Yang, and Y. Chen. 2021. The role of m6A modification in the biological functions and diseases. Signal transduction and targeted therapy 6 (1): 74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yue, B., C. Song, L. Yang, R. Cui, X. Cheng, Z. Zhang, and G. Zhao. 2019. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Molecular cancer 18 (1): 142.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang, R., Y. Qu, Z. Ji, C. Hao, Y. Su, Y. Yao, W. Zuo, X. Chen, M. Yang, and G. Ma. 2022. METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner. Cellular & molecular biology letters 27 (1): 55.

    Article  CAS  Google Scholar 

  34. Nivet-Antoine, V., C.H. Cottart, H. Lemarechal, M. Vamy, I. Margaill, J.L. Beaudeux, D. Bonnefont-Rousselot, and D. Borderie. 2010. trans-Resveratrol downregulates Txnip overexpression occurring during liver ischemia-reperfusion. Biochimie 92 (12): 1766–1771.

    Article  CAS  PubMed  Google Scholar 

  35. Han, X., Y.C. Wu, M. Meng, Q.S. Sun, S.M. Gao, and H. Sun. 2018. Linarin prevents LPS-induced acute lung injury by suppressing oxidative stress and inflammation via inhibition of TXNIP/NLRP3 and NF-kappaB pathways. International Journal of Molecular Medicine 42 (3): 1460–1472.

    PubMed  PubMed Central  Google Scholar 

  36. Dai, Y., S. Wang, S. Chang, D. Ren, S. Shali, C. Li, H. Yang, Z. Huang, and J. Ge. 2020. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-kappaB/NLRP3 inflammasome signaling pathway. Journal of Molecular and Cellular Cardiology 142: 65–79.

    Article  CAS  PubMed  Google Scholar 

  37. Sutterwala, F.S., S. Haasken, and S.L. Cassel. 2014. Mechanism of NLRP3 inflammasome activation. Annals of the New York Academy of Sciences 1319 (1): 82–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, A., J. Yu, S. Yan, X. Zhao, C. Chen, Y. Zhou, X. Zhao, M. Hua, R. Wang, C. Zhang, et al. 2018. The genetic polymorphism and expression profiles of NLRP3 inflammasome in patients with chronic myeloid leukemia. Human immunology 79 (1): 57–62.

    Article  CAS  PubMed  Google Scholar 

  39. Karasawa, T., and M. Takahashi. 2017. Role of NLRP3 inflammasomes in atherosclerosis. Journal of Atherosclerosis and Thrombosis 24 (5): 443–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Masters, S.L., A. Dunne, S.L. Subramanian, R.L. Hull, G.M. Tannahill, F.A. Sharp, C. Becker, L. Franchi, E. Yoshihara, Z. Chen, et al. 2010. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nature immunology 11 (10): 897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Opipari, A., and L. Franchi. 2015. Role of inflammasomes in intestinal inflammation and Crohn’s disease. Inflammatory Bowel Diseases 21 (1): 173–181.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Shaanxi Provincial Health Research Fund (No. 2022D005) and the National Natural Science Foundation of China (No. 82103553).

Shaanxi Provincial Health Research Fund,2022D005,National Natural Science Foundation of China,82103553

Author information

Authors and Affiliations

Authors

Contributions

Yong Zhang, Jianrui Lv, Jian Bai, Xue Zhang, Gang Wu, Xiaoming Lei, Wei Li, and Zhenni Zhang contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Yong Zhang, Jianrui Lv, Jian Bai, and Xue Zhang. Yong Zhang, Jianrui Lv, Gang Wu, Xiaoming Lei, and Wei Li analyzed experimental results. Yong Zhang, Jianrui Lv, Jian Bai, and Zhenni Zhang were responsible for data curation. The first draft of the manuscript was written by Yong Zhang and Jianrui Lv. Yong Zhang, Jianrui Lv, Jian Bai, Xue Zhang, Gang Wu, Xiaoming Lei, Wei Li, and Zhenni Zhang commented on previous versions of the manuscript. Yong Zhang, Jianrui Lv, Jian Bai, Xue Zhang, and Zhenni Zhang edited and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhenni Zhang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10753_2023_1958_MOESM1_ESM.tif

Supplementary file1: METTL3 is upregulated in OGD/R-induced NCTC 1469 cells. (a) The mRNA level of METTL3 in NCTC 1469 cells treated with or without OGD/R. (b) The protein level of METTL3 in NCTC 1469 cells treated with or without OGD/R. *P < 0.05, **P < 0.01, ***P < 0.001. (TIF 542 KB)

10753_2023_1958_MOESM2_ESM.tif

Supplementary file2: METTL3 knockdown alleviates OGD/R-induced hepatic cell injury in NCTC 1469 cells. NCTC 1469 cells infected with sh-NC or sh-METTL3 lentivirus were subjected to OGD/R injury. The mRNA (a) and protein (b) expression levels of METTL3 were detected by qPCR and western blot, respectively. (c) Cell viability was assessed by CCK-8 assay. (d and e) The release levels of IL-1β and IL-18 were measured by ELISA assay. (f) The protein expression levels of NLRP3 and Caspase1-p20 were detected by western blot. ns indicates no statistical significance. *P < 0.05, **P < 0.01, ***P < 0.001. (TIF 1808 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lv, J., Bai, J. et al. METTL3 Modulates TXNIP Expression to Affect the Activation of NLRP3 Inflammasome in Hepatic Cells Under Oxygen–Glucose Deprivation/Reperfusion Injury. Inflammation (2024). https://doi.org/10.1007/s10753-023-01958-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-023-01958-4

KEY WORDS

Navigation