Skip to main content
Log in

Right ventricular dilatation: echocardiographic differential diagnosis

  • Review Article–Cardiology
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

The initial means of detecting right ventricular (RV) dilatation is often transthoracic echocardiography (TTE), and once the presence of RV dilatation is suspected, there is the possibility of RV volume overload, RV pressure overload, RV myocardial disease, and even nonpathological RV dilatation. With respect to congenital heart disease with RV volume overload, defects or valvular abnormalities can be easily detected with TTE, with the exception of some diseases. Volumetric assessment using three-dimensional echocardiography may be useful in determining the intervention timing in these diseases. When the disease progresses in patients with pulmonary hypertension as a result of RV pressure overload, RV dilatation becomes more prominent than hypertrophy, and RV functional parameters predict the prognosis at this stage of maladaptive remodeling. The differential diagnosis of cardiomyopathy or comparison with nonpathological RV dilatation may be difficult in the setting of RV myocardial disease. The characteristics of RV functional parameters such as two-dimensional speckle tracking may help differentiate RV cardiomyopathy from other conditions. We review the diseases presenting with RV dilatation, their characteristics, and echocardiographic findings and parameters that are significant in assessing their status or intervention timing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARVC:

Arrhythmogenic right ventricular cardiomyopathy

ASD:

Atrial septal defect

CMR:

Cardiac magnetic resonance

LV:

Left ventricle, left ventricular

Qp/Qs:

Pulmonary to systemic blood flow ratio

RV:

Right ventricle, right ventricular

TAPSE:

Tricuspid annular plane systolic excursion

3D:

Three-dimensional

TOF:

Tetralogy of Fallot

TR:

Tricuspid regurgitation

TTE:

Transthoracic echocardiography, transthoracic echocardiographic

2D:

Two-dimensional

References

  1. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, et al. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. 2015;17:29.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Puchalski MD, Williams RV, Askovich B, et al. Assessment of right ventricular size and function: echo versus magnetic resonance imaging. Congenit Heart Dis. 2007;2:27–31.

    Article  PubMed  Google Scholar 

  3. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–9.

    Article  PubMed  Google Scholar 

  4. Galderisi M, Cosyns B, Edvardsen T, et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2017;18:1301–10.

    Article  PubMed  Google Scholar 

  5. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713 (quiz 86–8).

    Article  PubMed  Google Scholar 

  6. Anwar AM, Soliman O, van den Bosch AE, et al. Assessment of pulmonary valve and right ventricular outflow tract with real-time three-dimensional echocardiography. Int J Cardiovasc Imaging. 2007;23:167–75.

    Article  PubMed  Google Scholar 

  7. Ostenfeld E, Flachskampf FA. Assessment of right ventricular volumes and ejection fraction by echocardiography: from geometric approximations to realistic shapes. Echo Res Pract. 2015;2:R1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ryan T, Petrovic O, Dillon JC, et al. An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol. 1985;5:918–24.

    Article  CAS  PubMed  Google Scholar 

  9. Partington SL, Kilner PJ. How to image the dilated right ventricle. Circ Cardiovasc Imaging. 2017;10:e004688.

    Article  PubMed  Google Scholar 

  10. Murphy JG, Gersh BJ, McGoon MD, et al. Long-term outcome after surgical repair of isolated atrial septal defest. Follow-up at 27 to 32 years. N Eng J Med. 1990;323:1645–50.

    Article  CAS  Google Scholar 

  11. Zoghbi WA, Adams D, Bonow RO, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30:303–71.

    Article  PubMed  Google Scholar 

  12. Baumgartner H, De Backer J, Babu-Narayan SV, et al. 2020 ESC guidelines for the management of adult congenital heart disease. Eur Heart J. 2021;42:563–645.

    Article  CAS  PubMed  Google Scholar 

  13. Trzebiatowska-Krzynska A, Swahn E, Wallby L, et al. Three-dimensional echocardiography to identify right ventricular dilatation in patients with corrected Fallot anomaly or pulmonary stenosis. Clin Physiol Funct Imaging. 2021;41:51–61.

    Article  CAS  PubMed  Google Scholar 

  14. Stout KK, Daniels CJ, Aboulhosn JA, et al. 2018 AHA/ACC Guideline for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73:e81–192.

    Article  PubMed  Google Scholar 

  15. Topilsky Y, Maltais S, Medina Inojosa J, et al. Burden of tricuspid regurgitation in patients diagnosed in the community setting. JACC Cardiovasc Imaging. 2019;12:433–42.

    Article  PubMed  Google Scholar 

  16. Izumi C, Eishi K, Ashihara K, et al. JCS/JSCS/JATS/JSVC 2020 guidelines on the management of valvular heart disease. Circ J. 2020;84:2037–119.

    Article  PubMed  Google Scholar 

  17. Hahn RT, Zamorano JL. The need for a new tricuspid regurgitation grading scheme. Eur Heart J Cardiovasc Imaging. 2017;18:1342–3.

    Article  PubMed  Google Scholar 

  18. Omori T, Uno G, Shimada S, et al. Impact of new grading system and new hemodynamic classification on long-term outcome in patients with severe tricuspid regurgitation. Circ Cardiovasc Imaging. 2021;14:e011805.

    Article  PubMed  Google Scholar 

  19. Fortuni F, Dietz MF, Prihadi EA, et al. Prognostic implications of a novel algorithm to grade secondary tricuspid regurgitation. JACC Cardiovasc Imaging. 2021;14:1085–95.

    Article  PubMed  Google Scholar 

  20. Kim YJ, Kwon DA, Kim HK, et al. Determinants of surgical outcome in patients with isolated tricuspid regurgitation. Circulation. 2009;120:1672–8.

    Article  PubMed  Google Scholar 

  21. Kim JB, Jung SH, Choo SJ, et al. Surgical outcomes of severe tricuspid regurgitation: predictors of adverse clinical outcomes. Heart (British Cardiac Society). 2013;99:181–7.

    PubMed  Google Scholar 

  22. Schneider M, Dannenberg V, Konig A, et al. Prognostic value of echocardiographic right ventricular function parameters in the presence of severe tricuspid regurgitation. J Clin Med. 2021;10:2266.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim M, Lee HJ, Park JB, et al. Preoperative right ventricular free-wall longitudinal strain as a prognosticator in isolated surgery for severe functional tricuspid regurgitation. J Am Heart Assoc. 2021;10:e019856.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D34-41.

    Article  PubMed  Google Scholar 

  25. Vonk Noordegraaf A, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol. 2017;69:236–43.

    Article  PubMed  Google Scholar 

  26. Ghio S, Pazzano AS, Klersy C, et al. Clinical and prognostic relevance of echocardiographic evaluation of right ventricular geometry in patients with idiopathic pulmonary arterial hypertension. Am J Cardiol. 2011;107:628–32.

    Article  PubMed  Google Scholar 

  27. Goh ZM, Balasubramanian N, Alabed S, et al. Right ventricular remodeling in pulmonary arterial hypertension predicts treatment response. Heart. 2022;108:1392–400.

    Article  PubMed  Google Scholar 

  28. Vanderpool RR, Pinsky MR, Naeije R, et al. RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary hypertension. Heart. 2015;101:37–43.

    Article  PubMed  Google Scholar 

  29. Tello K, Wan J, Dalmer A, et al. Validation of the tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio for the assessment of right ventricular-arterial coupling in severe pulmonary hypertension. Circ Cardiovasc Imaging. 2019;12:e009047.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Guazzi M, Naeije R, Arena R, et al. Echocardiography of right ventriculoarterial coupling combined with cardiopulmonary exercise testing to predict outcome in heart failure. Chest. 2015;148:226–34.

    Article  PubMed  Google Scholar 

  31. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121:1533–41.

    Article  PubMed  PubMed Central  Google Scholar 

  32. te Riele AS, James CA, Rastegar N, et al. Yield of serial evaluation in at-risk family members of patients with ARVD/C. J Am Coll Cardiol. 2014;64:293–301.

    Article  Google Scholar 

  33. Mast TP, Teske AJ, Walmsley J, et al. Right ventricular imaging and computer simulation for electromechanical substrate characterization in arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2016;68:2185–97.

    Article  PubMed  Google Scholar 

  34. Mast TP, Taha K, Cramer MJ, et al. The prognostic value of right ventricular deformation imaging in early arrhythmogenic right ventricular cardiomyopathy. JACC Cardiovasc Imaging. 2019;12:446–55.

    Article  PubMed  Google Scholar 

  35. Corrado D, Perazzolo Marra M, Zorzi A, et al. Diagnosis of arrhythmogenic cardiomyopathy: the Padua criteria. Int J Cardiol. 2020;319:106–14.

    Article  PubMed  Google Scholar 

  36. Philips B, Madhavan S, James CA, et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy and cardiac sarcoidosis: distinguishing features when the diagnosis is unclear. Circ Arrhythm Electrophysiol. 2014;7:230–6.

    Article  PubMed  Google Scholar 

  37. Kusunose K, Fujiwara M, Yamada H, et al. Deterioration of biventricular strain is an early marker of cardiac involvement in confirmed sarcoidosis. Eur Heart J Cardiovasc Imaging. 2020;21:796–804.

    Article  PubMed  Google Scholar 

  38. Pagourelias ED, Kouidi E, Efthimiadis GK, et al. Right atrial and ventricular adaptations to training in male Caucasian athletes: an echocardiographic study. J Am Soc Echocardiogr. 2013;26:1344–52.

    Article  PubMed  Google Scholar 

  39. Oxborough D, Sharma S, Shave R, et al. The right ventricle of the endurance athlete: the relationship between morphology and deformation. J Am Soc Echocardiogr. 2012;25:263–71.

    Article  PubMed  Google Scholar 

  40. D’Andrea A, Caso P, Bossone E, et al. Right ventricular myocardial involvement in either physiological or pathological left ventricular hypertrophy: an ultrasound speckle-tracking two-dimensional strain analysis. Eur J Echocardiogr. 2010;11:492–500.

    Article  PubMed  Google Scholar 

  41. Baggish AL, Battle RW, Beaver TA, et al. Recommendations on the use of multimodality cardiovascular imaging in young adult competitive athletes: a report from the American Society of Echocardiography in Collaboration with the Society of Cardiovascular Computed Tomography and the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2020;33:523–49.

    Article  PubMed  Google Scholar 

  42. Oezcan S, Attenhofer Jost CH, Pfyffer M, et al. Pectus excavatum: echocardiography and cardiac MRI reveal frequent pericardial effusion and right-sided heart anomalies. Eur Heart J Cardiovasc Imaging. 2012;13:673–9.

    Article  CAS  PubMed  Google Scholar 

  43. Bates ER. Revisiting reperfusion therapy in inferior myocardial infarction. J Am Coll Cardiol. 1997;30:334–42.

    Article  CAS  PubMed  Google Scholar 

  44. Andersen HR, Falk E, Nielsen D. Right ventricular infarction: frequency, size and topography in coronary heart disease: a prospective study comprising 107 consecutive autopsies from a coronary care unit. J Am Coll Cardiol. 1987;10:1223–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiyo Yamano.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflict of interest.

Ethical statements

This study did not involve any experiments in human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamano, M., Yamano, T. & Matoba, S. Right ventricular dilatation: echocardiographic differential diagnosis. J Med Ultrasonics (2024). https://doi.org/10.1007/s10396-023-01399-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10396-023-01399-4

Keywords

Navigation