Skip to main content

Advertisement

Log in

Alpha-7 Nicotinic Receptor Agonist Protects Mice Against Pulmonary Emphysema Induced by Elastase

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Pulmonary emphysema is a primary component of chronic obstructive pulmonary disease (COPD), a life-threatening disorder characterized by lung inflammation and restricted airflow, primarily resulting from the destruction of small airways and alveolar walls. Cumulative evidence suggests that nicotinic receptors, especially the α7 subtype (α7nAChR), is required for anti-inflammatory cholinergic responses. We postulated that the stimulation of α7nAChR could offer therapeutic benefits in the context of pulmonary emphysema. To investigate this, we assessed the potential protective effects of PNU-282987, a selective α7nAChR agonist, using an experimental emphysema model. Male mice (C57BL/6) were submitted to a nasal instillation of porcine pancreatic elastase (PPE) (50 µl, 0.667 IU) to induce emphysema. Treatment with PNU-282987 (2.0 mg/kg, ip) was performed pre and post-emphysema induction by measuring anti-inflammatory effects (inflammatory cells, cytokines) as well as anti-remodeling and anti-oxidant effects. Elastase-induced emphysema led to an increase in the number of α7nAChR-positive cells in the lungs. Notably, both groups treated with PNU-282987 (prior to and following emphysema induction) exhibited a significant decrease in the number of α7nAChR-positive cells. Furthermore, both groups treated with PNU-282987 demonstrated decreased levels of macrophages, IL-6, IL-1β, collagen, and elastic fiber deposition. Additionally, both groups exhibited reduced STAT3 phosphorylation and lower levels of SOCS3. Of particular note, in the post-treated group, PNU-282987 successfully attenuated alveolar enlargement, decreased IL-17 and TNF-α levels, and reduced the recruitment of polymorphonuclear cells to the lung parenchyma. Significantly, it is worth noting that MLA, an antagonist of α7nAChR, counteracted the protective effects of PNU-282987 in relation to certain crucial inflammatory parameters. In summary, these findings unequivocally demonstrate the protective abilities of α7nAChR against elastase-induced emphysema, strongly supporting α7nAChR as a pivotal therapeutic target for ameliorating pulmonary emphysema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data is available upon request.

References

  1. Global Initiative for Chronic Obstructive Lung Disease. 2023. Global strategy for prevention, diagnosis and treatment of COPD: 2023 report. Global Initiative for Chronic Obstructive Lung Disease. Available at: https://goldcopd.org/2023-gold-report-2/.

  2. Agustí, A., and P.J. Barnes. 2012. Update in chronic obstructive pulmonary disease 2011. American Journal of Respiratory and Critical Care Medicine 185 (11): 1171–1176.

    Article  PubMed  Google Scholar 

  3. Hikichi, M., et al. 2019. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. Journal of Thoracic Disease 11 (Suppl 17): S2129–S2140.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Borovikova, L.V., et al. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405 (6785): 458–462.

    Article  CAS  PubMed  Google Scholar 

  5. Su, X., et al. 2007. Activation of the α7 nAChR reduces acid-induced acute lung injury in mice and rats. American Journal of Respiratory Cell and Molecular Biology 37 (2): 186–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Jonge, W., and L. Ulloa. 2007. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. British Journal of Pharmacology 151 (7): 915–929.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rosas-Ballina, M., and K. Tracey. 2009. Cholinergic control of inflammation. Journal of Internal Medicine 265 (6): 663–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pinheiro, N.M., et al. 2015. Pulmonary inflammation is regulated by the levels of the vesicular acetylcholine transporter. PLoS One. 10(3).

  9. Pinheiro, N.M., et al. 2020. Effects of VAChT reduction and α7nAChR stimulation by PNU-282987 in lung inflammation in a model of chronic allergic airway inflammation. European Journal of Pharmacology 882: 173239.

    Article  CAS  PubMed  Google Scholar 

  10. Pinheiro, N.M., et al. 2017. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. The FASEB Journal 31 (1): 320–332.

    Article  PubMed  Google Scholar 

  11. Yang, I.A., et al. 2011. Common pathogenic mechanisms and pathways in the development of COPD and lung cancer. Expert Opinion on Therapeutic Targets 15 (4): 439–456.

    Article  CAS  PubMed  Google Scholar 

  12. Hajos, M., et al. 2005. The selective α7 nicotinic acetylcholine receptor agonist PNU-282987 [N-[(3R)-1-azabicyclo [2.2. 2] oct-3-yl]-4-chlorobenzamide hydrochloride] enhances GABAergic synaptic activity in brain slices and restores auditory gating deficits in anesthetized rats. Journal of Pharmacology and Experimental Therapeutics 312 (3): 1213–1222.

  13. Vicens, P., et al. 2011. Behavioral effects of PNU-282987, an alpha7 nicotinic receptor agonist, in mice. Behavioural Brain Research 216 (1): 341–348.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Q., et al. 2018. α7 nicotinic acetylcholine receptor-mediated anti-inflammatory effect in a chronic migraine rat model via the attenuation of glial cell activation. Journal of Pain Research 11: 1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, F., et al. 2013. The protective effect of PNU-282987, a selective α7 nicotinic acetylcholine receptor agonist, on the hepatic ischemia-reperfusion injury is associated with the inhibition of high-mobility group box 1 protein expression and nuclear factor κB activation in mice. Shock 39 (2): 197–203.

    Article  PubMed  Google Scholar 

  16. Duris, K., et al. 2011. α7 nicotinic acetylcholine receptor agonist PNU-282987 attenuates early brain injury in a perforation model of subarachnoid hemorrhage in rats. Stroke 42 (12): 3530–3536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brégeon, F., et al. 2011. Activation of nicotinic cholinergic receptors prevents ventilator-induced lung injury in rats. PLoS ONE 6 (8): e22386.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Su, X., M.A. Matthay, and A.B. Malik. 2010. Requisite role of the cholinergic α7 nicotinic acetylcholine receptor pathway in suppressing gram-negative sepsis-induced acute lung inflammatory injury. The Journal of Immunology 184 (1): 401–410.

    Article  CAS  PubMed  Google Scholar 

  19. Van Westerloo, D.J., et al. 2005. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. Journal of Infectious Diseases 191 (12): 2138–2148.

    Article  PubMed  Google Scholar 

  20. Turek, J., et al. 1995. A sensitive technique for the detection of the α7 neuronal nicotinic acetylcholine receptor antagonist, methyllycaconitine, in rat plasma and brain. Journal of Neuroscience Methods 61 (1–2): 113–118.

    Article  CAS  PubMed  Google Scholar 

  21. CONCEA. 2019. CONCEA (Guia Brasil de produção manutenção de animais em atividades de ensino ou pesquisa científica. Fascículo 2 de Brasília, 30 de maio de 2019. https://www.mctic.gov.br/mctic/opencms/institucional/concea/paginas/publicacoes_concea.html.

  22. Ito, S., et al. 2005. Mechanics, nonlinearity, and failure strength of lung tissue in a mouse model of emphysema: Possible role of collagen remodeling. Journal of Applied Physiology 98 (2): 503–511.

    Article  PubMed  Google Scholar 

  23. Anciaes, A.M., et al. 2011. Respiratory mechanics do not always mirror pulmonary histological changes in emphysema. Clinics 66 (10): 1797–1803.

    PubMed  PubMed Central  Google Scholar 

  24. Yang, Y.-H., et al. 2015. Acetylcholine inhibits LPS-induced MMP-9 production and cell migration via the a7 nAChR-JAK2/STAT3 pathway in RAW264. 7 cells. Cellular Physiology and Biochemistry 36 (5): 2025–2038.

  25. Maouche, K., et al. 2009. α7 nicotinic acetylcholine receptor regulates airway epithelium differentiation by controlling basal cell proliferation. The American Journal of Pathology 175 (5): 1868–1882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lazarus, S.C. 1998. Inflammation, inflammatory mediators, and mediator antagonists in asthma. The Journal of Clinical Pharmacology 38 (7): 577–582.

    Article  CAS  PubMed  Google Scholar 

  27. Angeli, P., et al. 2008. Effects of chronic L-NAME treatment lung tissue mechanics, eosinophilic and extracellular matrix responses induced by chronic pulmonary inflammation. American Journal of Physiology-Lung Cellular and Molecular Physiology 294 (6): L1197–L1205.

    Article  CAS  PubMed  Google Scholar 

  28. Prado, C.M., et al. 2006. Effects of nitric oxide synthases in chronic allergic airway inflammation and remodeling. American Journal of Respiratory Cell and Molecular Biology 35 (4): 457–465.

    Article  CAS  PubMed  Google Scholar 

  29. Lanças, T., et al. 2006. Comparison of early and late responses to antigen of sensitized guinea pig parenchymal lung strips. Journal of Applied Physiology 100 (5): 1610–1616.

    Article  PubMed  Google Scholar 

  30. Montuschi, P., et al. 2000. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. American Journal of Respiratory and Critical Care Medicine 162 (3): 1175–1177.

    Article  CAS  PubMed  Google Scholar 

  31. Barnes, P.J., et al. 2006. Pulmonary biomarkers in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 174 (1): 6–14.

    Article  CAS  PubMed  Google Scholar 

  32. Pandey, K.C., S. De, and P.K. Mishra. 2017. Role of proteases in chronic obstructive pulmonary disease. Frontiers in Pharmacology 8: 512.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Milara, J., et al. 2016. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respiratory Research 17 (1): 1–14.

    Article  Google Scholar 

  34. Marmouzi, I., et al. 2023. α7 Nicotinic acetylcholine receptor potentiation downregulates chemotherapy-induced inflammatory overactivation by overlapping intracellular mechanisms. The International Journal of Biochemistry & Cell Biology 158: 106405.

    Article  CAS  Google Scholar 

  35. Báez-Pagán, C.A., M. Delgado-Vélez, and J.A. Lasalde-Dominicci. 2015. Activation of the macrophage α7 nicotinic acetylcholine receptor and control of inflammation. Journal of Neuroimmune Pharmacology 10 (3): 468–476.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rodrigues, R., et al. 2017. A murine model of elastase-and cigarette smoke-induced emphysema. Jornal Brasileiro de Pneumologia 43 (2): 95–100.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mahadeva, R., and S. Shapiro. 2002. Chronic obstructive pulmonary disease• 3: Experimental animal models of pulmonary emphysema. Thorax 57 (10): 908–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Agustí, A., et al. 2023. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. American Journal of Respiratory and Critical Care Medicine 207 (7): 819–837.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kerkhof, M., et al. 2020. The Long-Term Burden of COPD Exacerbations During Maintenance Therapy and Lung Function Decline. International Journal of Chronic Obstructive Pulmonary Disease 15: 1909.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Matera, M.G., M. Cazzola, and C. Page. 2021. Prospects for COPD treatment. Current Opinion in Pharmacology 56: 74–84.

    Article  CAS  PubMed  Google Scholar 

  41. Bagdas, D., et al. 2018. New insights on neuronal nicotinic acetylcholine receptors as targets for pain and inflammation: A focus on α7 nAChRs. Current Neuropharmacology 16 (4): 415–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo, K., et al. 2022. Varenicline and related interventions on smoking cessation: a systematic review and network meta-analysis. Drug and Alcohol Dependence 109672.

  43. Koga, M., et al. 2018. Varenicline is a smoking cessation drug that blocks alveolar expansion in mice intratracheally administrated porcine pancreatic elastase. Journal of Pharmacological Sciences 137 (2): 224–229.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, X.-F., et al. 2018. Electro-acupuncture regulates the cholinergic anti-inflammatory pathway in a rat model of chronic obstructive pulmonary disease. Journal of Integrative Medicine 16 (6): 418–426.

    Article  CAS  PubMed  Google Scholar 

  45. Fló, C., et al. 2006. Effects of exercise training on papain-induced pulmonary emphysema in Wistar rats. Journal of Applied Physiology 100 (1): 281–285.

    Article  PubMed  Google Scholar 

  46. Magnussen, H., et al. 2014. Stepwise withdrawal of inhaled corticosteroids in COPD patients receiving dual bronchodilation: WISDOM study design and rationale. Respiratory Medicine 108 (4): 593–599.

    Article  PubMed  Google Scholar 

  47. Wang, H., et al. 2003. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421 (6921): 384–388.

    Article  CAS  PubMed  Google Scholar 

  48. Zhu, S., et al. Anti‐inflammatory effects of α7‐nicotinic ACh receptors are exerted through interactions with adenylyl cyclase‐6. British Journal of Pharmacology.

  49. Bencherif, M., et al. 2011. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cellular and Molecular Life Sciences 68 (6): 931–949.

    Article  CAS  PubMed  Google Scholar 

  50. Suzuki, M., et al. 2017. The cellular and molecular determinants of emphysematous destruction in COPD. Scientific Reports 7 (1): 1–9.

    Article  Google Scholar 

  51. Jasper, A.E., et al. 2019. Understanding the role of neutrophils in chronic inflammatory airway disease. F 1000 Research 8.

  52. Polosukhin, V.V., et al. 2021. Small airway determinants of airflow limitation in chronic obstructive pulmonary disease. Thorax.

  53. Gomes, F., and S.-L. Cheng. 2023. Pathophysiology, Therapeutic Targets, and Future Therapeutic Alternatives in COPD: Focus on the Importance of the Cholinergic System. Biomolecules 13 (3): 476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hajiasgharzadeh, K., et al. 2019. Alpha7 nicotinic acetylcholine receptors in lung inflammation and carcinogenesis: Friends or foes? Journal of cellular physiology 234 (9): 14666–14679.

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, S., et al. 2018. Increased serum IL-17 and decreased serum IL-10 and IL-35 levels correlate with the progression of COPD. International Journal of Chronic Obstructive Pulmonary Disease 13: 2483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kurimoto, E., et al. 2013. IL-17A is essential to the development of elastase-induced pulmonary inflammation and emphysema in mice. Respiratory Research 14 (1): 1–10.

    Article  Google Scholar 

  57. Fukuzaki, S., et al. 2020. Preventive and therapeutic effect of anti IL-17 in an experimental model of elastase-induced lung injury in C57Bl6 mice. American Journal of Physiology-Cell Physiology.

  58. Tracey, K.J. 2007. Physiology and immunology of the cholinergic antiinflammatory pathway. The Journal of Clinical Investigation 117 (2): 289–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ulleryd, M.A., et al. 2019. Stimulation of alpha 7 nicotinic acetylcholine receptor (α7nAChR) inhibits atherosclerosis via immunomodulatory effects on myeloid cells. Atherosclerosis 287: 122–133.

    Article  CAS  PubMed  Google Scholar 

  60. Gauthier, A.G., et al. 2021. From nicotine to the cholinergic anti-inflammatory reflex–Can nicotine alleviate the dysregulated inflammation in COVID-19? Journal of Immunotoxicology 18 (1): 23–29.

    Article  CAS  PubMed  Google Scholar 

  61. Douaoui, S., et al. 2020. GTS-21, an α7nAChR agonist, suppressed the production of key inflammatory mediators by PBMCs that are elevated in COPD patients and associated with impaired lung function. Immunobiology 225 (3): 151950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Garg, B.K., and R.H. Loring. 2019. GTS-21 has cell-specific anti-inflammatory effects independent of α7 nicotinic acetylcholine receptors. PLoS ONE 14 (4): e0214942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kulkarni, T., et al. 2016. Matrix remodeling in pulmonary fibrosis and emphysema. American Journal of Respiratory Cell and Molecular Biology 54 (6): 751–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, Y., et al. 2016. Relationships of MMP-9 and TIMP-1 proteins with chronic obstructive pulmonary disease risk: A Systematic Review And Meta-Analysis. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences 21: 12.

    Article  PubMed  Google Scholar 

  65. Robertoni, F., et al. 2015. Collagenase mRNA Overexpression and Decreased Extracellular Matrix Components Are Early Events in the Pathogenesis of Emphysema. PLoS One. 8;10 (6): e0129590.

  66. Lourenço, J.D., et al. 2014. A treatment with a protease inhibitor recombinant from the cattle tick (Rhipicephalus Boophilus microplus) ameliorates emphysema in mice. PLoS One 2;9(6): e98216.

  67. Fysikopoulos, A., et al. 2021. Amelioration of elastase-induced lung emphysema and reversal of pulmonary hypertension by pharmacological iNOS inhibition in mice. British Journal of Pharmacology 178 (1): 152–171.

    Article  CAS  PubMed  Google Scholar 

  68. Stegemann, A., et al. 2011. Expression of the α7 Nicotinic Acetylcholine Receptor Is Critically Required for the Antifibrotic Effect of PHA-543613 on Skin Fibrosis. Neuroendocrinology 112 (5): 446–456.

    Article  Google Scholar 

  69. Barkauskas, C.E., et al. 2013. Type 2 alveolar cells are stem cells in adult lung. The Journal of Clinical Investigation 123 (7): 3025–3036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Montuschi, P., et al. 1999. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. American Journal of Respiratory and Critical Care Medicine 160 (1): 216–220.

    Article  CAS  PubMed  Google Scholar 

  71. Geraghty, P., et al. 2013. STAT3 modulates cigarette smoke-induced inflammation and protease expression. Frontiers in Physiology 4: 267.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gallowitsch-Puerta, M., and V.A. Pavlov. 2007. Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sciences 80 (24–25): 2325–2329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Croker, B.A., et al. 2003. SOCS3 negatively regulates IL-6 signaling in vivo. Nature Immunology 4 (6): 540–545.

    Article  CAS  PubMed  Google Scholar 

  74. Santana, F.P., et al. 2020. Dehydrodieugenol improved lung inflammation in an asthma model by inhibiting the STAT3/SOCS3 and MAPK pathways. Biochemical Pharmacology 180: 114175.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grants 08/55359-5, 14/25689-4 and 20/13480-4) and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grant number #306278/2015-4) received by C.M.P and by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grants 18/15738-9) received by N.M.P-M.

Author information

Authors and Affiliations

Authors

Contributions

R.B., N.M.P., F.D.T.Q.L., I.F.L.C.T., A.C.T-A, M.A.M.P., V.F.P, C.M.P concept the study and design the experiments. R.B, N.M.P., F.P.R.S–N., C.R.O., L.T., S.O.S, S.F, W.P.R.T are involved in the material preparation, data collection and analysis. R.B and C.M.P first draft of the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Carla M. Prado.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banzato, R., Pinheiro-Menegasso, N.M., Novelli, F.P.R.S. et al. Alpha-7 Nicotinic Receptor Agonist Protects Mice Against Pulmonary Emphysema Induced by Elastase. Inflammation (2024). https://doi.org/10.1007/s10753-023-01953-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-023-01953-9

KEY WORDS

Navigation