Skip to main content

Advertisement

Log in

PEDF protects retinal pigment epithelium from ferroptosis and ameliorates dry AMD-like pathology in a murine model

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Age-related macular degeneration (AMD) is the leading cause of irreversible vision damage among elderly individuals. There is still no efficient treatment for dry AMD. Retinal pigment epithelial (RPE) degeneration has been confirmed to play an important role in dry AMD. Recent studies have reported that ferroptosis caused by iron overload and lipid peroxidation may be the primary causes of RPE degeneration. However, the upstream regulatory molecules of RPE ferroptosis remain largely unknown. Pigment epithelium-derived factor (PEDF) is an important endogenic protective factor for the RPE. Our results showed that in the murine dry AMD model induced by sodium iodate (SI), PEDF expression was downregulated. Moreover, dry AMD-like pathology was observed in PEDF-knockout mice. Therefore, the aim of this study was to reveal the effects and mechanism of PEDF on RPE ferroptosis and investigate potential therapeutic targets for dry AMD. The results of lipid peroxidation and transmission electron microscope showed that retinal ferroptosis was significantly activated in SI-treated mice and PEDF-knockout mice. Restoration of PEDF expression ameliorated SI-induced retinal dysfunction in mice, as assessed by electroretinography and optical coherence tomography. Mechanistically, western blotting and immunofluorescence analysis demonstrated that the overexpression of PEDF could upregulate the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy chain-1 (FTH1), which proved to inhibit lipid peroxidation and RPE ferroptosis induced by SI. This study revealed the novel role of PEDF in ferroptosis inhibition and indicated that PEDF might be a potential therapeutic target for dry AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The experimental data reported in this study will be made available upon reasonable request from the corresponding author (laikunbei888@mail.sysu.edu.cn).

Abbreviations

AMD :

Age-related macular degeneration

RPE :

Retinal pigment epithelium

SI :

Sodium iodate

PEDF :

Pigment epithelial-derived factor

FTH1 :

Ferritin heavy chain 1

GPX4 :

glutathione peroxidase 4

ERG :

Electroretinography

H&E :

Hematoxylin and eosin

OCT :

Optical coherence tomography

qRT-PCR :

Quantitative real-time PCR

TEM :

Transmission electron microscope

ROS :

Reactive oxygen species

IF :

Immunofluorescence

CCK-8 :

Cell Counting Kit-8

FBS :

Fetal bovine serum

ZO-1 :

Zonula occludens protein 1

References

  1. Fleckenstein M, Keenan TDL, Guymer RH, Chakravarthy U, Schmitz-Valckenberg S, Klaver CC, et al. Age-related macular degeneration. Nat Rev Dis Primers. 2021;7(1):31.

    Article  PubMed  Google Scholar 

  2. Blasiak J, Sobczuk P, Pawlowska E, Kaarniranta K. Interplay between aging and other factors of the pathogenesis of age-related macular degeneration. Ageing Res Rev. 2022;81:101735.

    Article  CAS  PubMed  Google Scholar 

  3. Sharma R, Bose D, Maminishkis A, Bharti K. Retinal pigment epithelium replacement therapy for age-related macular degeneration: are we there yet? Annu Rev Pharmacol Toxicol. 2020;60:553–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang Z, Ju Y, Dai X, Ni N, Liu Y, Zhang D, et al. HO-1-mediated ferroptosis as a target for protection against retinal pigment epithelium degeneration. Redox Biol. 2021;43:101971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun Y, Zheng Y, Wang C, Liu Y. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis. 2018;9(7):753.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gupta U, Ghosh S, Wallace CT, Shang P, Xin Y, Nair AP, et al. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD. Autophagy. 2022;1–20.

  7. Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185(14):2401–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ouyang S, You J, Zhi C, Li P, Lin X, Tan X, et al. Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis. 2021;12(8):782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao T, Guo X, Sun Y. Iron accumulation and lipid peroxidation in the aging retina: implication of ferroptosis in age-related macular degeneration. Aging Dis. 2021;12(2):529–51.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ma B, Zhou Y, Liu R, Zhang K, Yang T, Hu C, et al. Pigment epithelium-derived factor (PEDF) plays anti-inflammatory roles in the pathogenesis of dry eye disease. Ocul Surf. 2021;20:70–85.

    Article  PubMed  Google Scholar 

  11. Barnstable CJ, Tombran-Tink J. Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Retin Eye Res. 2004;23(5):561–77.

    Article  CAS  PubMed  Google Scholar 

  12. Ding DC, Wen YT, Tsai RK. Pigment epithelium-derived factor from ARPE19 promotes proliferation and inhibits apoptosis of human umbilical mesenchymal stem cells in serum-free medium. Exp Mol Med. 2017;49(12):e411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carpino G, Cardinale V, Di Giamberardino A, Overi D, Donsante S, Colasanti T, et al. Thrombospondin 1 and 2 along with PEDF inhibit angiogenesis and promote lymphangiogenesis in intrahepatic cholangiocarcinoma. J Hepatol. 2021;75(6):1377–86.

    Article  CAS  PubMed  Google Scholar 

  14. He X, Cheng R, Park K, Benyajati S, Moiseyev G, Sun C, et al. Pigment epithelium-derived factor, a noninhibitory serine protease inhibitor, is renoprotective by inhibiting the Wnt pathway. Kidney Int. 2017;91(3):642–57.

    Article  CAS  PubMed  Google Scholar 

  15. Wang B, Wang L, Gu S, Yu Y, Huang H, Mo K, et al. D609 protects retinal pigmented epithelium as a potential therapy for age-related macular degeneration. Signal Transduct Target Ther. 2020;5(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chan CM, Huang DY, Sekar P, Hsu SH, Lin WW. Reactive oxygen species-dependent mitochondrial dynamics and autophagy confer protective effects in retinal pigment epithelial cells against sodium iodate-induced cell death. J Biomed Sci. 2019;26(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tang Z, Huo M, Ju Y, Dai X, Ni N, Liu Y, et al. Nanoprotection against retinal pigment epithelium degeneration via ferroptosis inhibition. Small Methods. 2021;5(12):e2100848.

    Article  PubMed  Google Scholar 

  18. Datta S, Cano M, Ebrahimi K, Wang L, Handa JT. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res. 2017;60:201–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cai J, Nelson KC, Wu M, Sternberg P, Jones DP. Oxidative damage and protection of the RPE. Prog Retin Eye Res. 2000;19(2):205–21.

    Article  CAS  PubMed  Google Scholar 

  20. Tseng WA, Thein T, Kinnunen K, Lashkari K, Gregory MS, D’Amore PA, et al. NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: implications for age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013;54(1):110–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eisenstein M. The quest to treat dry age-related macular degeneration. Nature. 2021;600(7887):S1.

    Article  CAS  PubMed  Google Scholar 

  22. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ru Q, Li Y, Xie W, Ding Y, Chen L, Xu G, et al. Fighting age-related orthopedic diseases: focusing on ferroptosis. Bone Res. 2023;11(1):12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang M, Tsui MG, Tsang JKW, Goit RK, Yao K-M, So K-F, et al. Involvement of FSP1-CoQ10-NADH and GSH-GPx-4 pathways in retinal pigment epithelium ferroptosis. Cell Death Dis. 2022;13(5):468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Becerra SP, Notario V. The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential. Nat Rev Cancer. 2013;13(4):258–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ho TC, Chen SL, Yang YC, Liao CL, Cheng HC, Tsao YP. PEDF induces p53-mediated apoptosis through PPAR gamma signaling in human umbilical vein endothelial cells. Cardiovasc Res. 2007;76(2):213–23.

    Article  CAS  PubMed  Google Scholar 

  27. Yamagishi S-I, Matsui T, Adachi H, Takeuchi M. Positive association of circulating levels of advanced glycation end products (AGEs) with pigment epithelium-derived factor (PEDF) in a general population. Pharmacol Res. 2010;61(2):103–7.

    Article  CAS  PubMed  Google Scholar 

  28. Xiang W, Li L, Hong F, Zeng Y, Zhang J, Xie J, et al. N-cadherin cleavage: a critical function that induces diabetic retinopathy fibrosis via regulation of β-catenin translocation. FASEB J. 2023;37(4):e22878.

    Article  CAS  PubMed  Google Scholar 

  29. Tombran-Tink J, Barnstable CJ. PEDF: a multifaceted neurotrophic factor. Nat Rev Neurosci. 2003;4(8):628–36.

    Article  CAS  PubMed  Google Scholar 

  30. Comitato A, Subramanian P, Turchiano G, Montanari M, Becerra SP, Marigo V. Pigment epithelium-derived factor hinders photoreceptor cell death by reducing intracellular calcium in the degenerating retina. Cell Death Dis. 2018;9(5):560.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (82171066). This article was also supported by Natural Science Foundation of Guangdong Province (2414050005730), so we added this funding in this version. Guangzhou Science and Technology Plan Project (202102010333 and SL2024A03J00359), and Guangdong Basic and Applied Basic Research Fund Project (2021A1515010895 and SL2023A04J00138).

Author information

Authors and Affiliations

Authors

Contributions

KBL, LHL and WX conceived the study and designed the experiments. WX and LHL performed the experiments, finalized the data set, and drafted the manuscript. WX and LHL contributed equally in this study. QZ participated in the experiments, preparation the resources and revised the original draft. YCZ, JHS, and ZTC contributed to the in vivo experiments. GQG, and KBL participated in the discussion. KBL supervised the entire study and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guoquan Gao or Kunbei Lai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, W., Li, L., Zhao, Q. et al. PEDF protects retinal pigment epithelium from ferroptosis and ameliorates dry AMD-like pathology in a murine model. GeroScience 46, 2697–2714 (2024). https://doi.org/10.1007/s11357-023-01038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-01038-3

Keywords

Navigation