Skip to main content
Log in

Phase Equilibria and Chemical Reactions in the Mn2O3–ZnO–SiO2, Mn3О4–ZnO–SiO2, and MnO–ZnO–SiO2 Systems

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The subject matter of this work was the triangulation of the Mn2O3–ZnO–SiO2, Mn3O4–ZnO–SiO2, and MnO–ZnO–SiO2 systems and the determination of phase transformations to yield Zn2 – 2хMn2хSiO4 solid solution. Equilibrium phase diagrams have been plotted taking into account the existence temperatures of each of the manganese oxides, phase compositions of the constituent binary systems, and checkup points, whose phase compositions helped us to determine the positions of secondary triangles. The phase compositions of reaction products of the terminal oxides and the phase transformation sequence during Zn2 – 2хMn2хSiO4 synthesis were monitored by X-ray powder diffraction and thermal analysis. Phase ratios in the MnOх–ZnO–SiO2 system are caused by the charge states of manganese ions changing in response to rising temperature. The triangulation of the Mn2O3–ZnO–SiO2 system at 800°С is determined by the ZnMn2O4–Zn2SiO4 tie-line and partitions the system to the ZnO–Zn2SiO4–ZnMn2O4, Zn2SiO4–ZnMn2O4–SiO2, and ZnMn2O4–SiO2–Mn2O3 simplex triangles. The Zn2 – 2хMn2хSiO4 solid solution with an extent limited to Zn1.6Mn0.4SiO4 is formed at temperatures above 1000°С. The triangulation of the MnO–ZnO–SiO2 ternary system is determined by the Zn1.6Mn0.4SiO4–ZnO–MnSiO3 simplex triangle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ch. Wei, J. Yu, G. Qiu, et al., J. Alloys Compd. 938, 168554 (2023). https://doi.org/10.1016/j.jallcom.2022.168554

    Article  CAS  Google Scholar 

  2. J. Chen, H. Zuo, Ch.-Q. Wang, et al., Electrochim. Acta 426, 140780 (2022). https://doi.org/10.1016/j.electacta.2022.140780

    Article  CAS  Google Scholar 

  3. I. V. Ivanova, N. A. Zaitseva, R. F. Samigullina, et al., Solid State Sci. 136, 107110 (2023). https://doi.org/10.1016/j.solidstatesciences.2023.107110

    Article  CAS  Google Scholar 

  4. R. F. Samigullina, I. V. Ivanova, N. A. Zaitseva, et al., Opt. Mater. 132, 112788 (2022). https://doi.org/10.1016/j.optmat.2022.112788

    Article  CAS  Google Scholar 

  5. T. I. Krasnenko, R. F. Samigullina, N. A. Zaitseva, et al., J. Alloys Compd. 907, 164433 (2022). https://doi.org/10.1016/j.jallcom.2022.164433

    Article  CAS  Google Scholar 

  6. T. I. Krasnenko, A. N. Enyashin, N. A. Zaitseva, et al., J. Alloys Compd. 820, 153129 (2020). https://doi.org/10.1016/j.jallcom.2019.153129

    Article  CAS  Google Scholar 

  7. M. A. Simonov, P. A. Sandomirskii, Yu. K. Egorov-Tismenko, et al., Dokl. AN SSSR 237, 581 (1997).

    Google Scholar 

  8. K. A. Petrovykh, V. S. Kortov, N. V. Gaponenko, et al., Phys. Solid State. 58, 2062 (2016). https://doi.org/10.1134/S1063783416100280

    Article  CAS  Google Scholar 

  9. S. M. Abo-Naf and M. A. Marzouk, Nano-Struct. Nano-Objects 26, 100685 (2021). https://doi.org/10.1016/j.nanoso.2021.100685

    Article  CAS  Google Scholar 

  10. K. W. Park, H. S. Lim, S. W. Park, et al., Chem. Phys. Lett. 636, 141 (2015). https://doi.org/10.1016/j.cplett.2015.07.032

    Article  CAS  Google Scholar 

  11. J. S. Huebner and M. Sato, Am. Mineral. 55, 934 (1970).

    CAS  Google Scholar 

  12. E. N. Bunting, J. Am. Ceram. Soc. 13, 5 (1930). https://doi.org/10.1111/j.1151-2916.1930.tb16797.x

    Article  CAS  Google Scholar 

  13. I. Isomaki, R. Zhang, L. Xia, et al., Trans. Nonferrous Metals Soc. China 28, 1869 (2018). .https://doi.org/10.1016/S1003-6326(18)64832-0

    Article  CAS  Google Scholar 

  14. R. F. Samigullina and T. I. Krasnenko, Mater. Res. Bull. 129, 110890 (2020). https://doi.org/10.1016/j.materresbull.2020.110890

    Article  CAS  Google Scholar 

  15. F. C. M. Driessens and G. D. Rieck, J. Inorg. Nucl. Chem. 28, 1593 (1966). .https://doi.org/10.1016/0022-1902(66)80056-8

    Article  CAS  Google Scholar 

  16. L. Nadherny, O. Jankovsky, Z. Sofer, et al., J. Eur. Ceram. Soc. 35, 555 (2015). .https://doi.org/10.1016/j.jeurceramsoc.2014.09.008

    Article  CAS  Google Scholar 

  17. F. P. Glasser, Am. J. Sci. 256, 398 (1958). https://doi.org/10.2475/ajs.256.6.398

    Article  CAS  Google Scholar 

  18. A. E. Morris and A. Muan, JOM 18, 957 (1966). https://doi.org/10.1007/bf03378486

    Article  CAS  Google Scholar 

  19. I. Abs-Wurmbach, Contrib. Mineral. Petrol. 71, 393 (1980).

    Article  CAS  Google Scholar 

  20. Q.-S. Cao, W.-Zh. Lu, Zh.-Y. Zou, et al., J. Alloys Compd. 661, 196 (2016). https://doi.org/10.1016/j.jallcom.2015.11.198

    Article  CAS  Google Scholar 

  21. I. O. Troyanchuk, A. I. Akimov, N. V. Kasper, et al., Fiz. Tverd. Tela 36, 3263 (1994). https://journals.ioffe.ru/articles/16709.

  22. E. K. Kazenas, G. N. Zviadadze, and M. A. Bol’shikh, Izv. AN SSSR, Metally 2, 67 (1984).

    Google Scholar 

  23. N. A. Gribchenkova, A. S. Smirnov, K. G. Smorchkov, et al., Russ. J. Inorg. Chem. 66, 1873 (2021). https://doi.org/10.1134/S0036023621120044

    Article  CAS  Google Scholar 

  24. C. N. Fenner, J. Wash. Acad. Sci. 2, 471 (1912).

    Google Scholar 

  25. O. I. Gyrdasova, A. E. Stepanov, S. V. Naumov, et al., Fiz.-Khim. Asp. Izuch. Klast. Nanostrukt. Nanomater. 14, 583 (2022). https://doi.org/10.26456/pcascnn/2022.14.583

    Article  CAS  Google Scholar 

  26. J.-H. Huang and E. Rosen, Phys. Chem. Miner. 21, 228 (1994).

    Article  CAS  Google Scholar 

  27. F. Liebau, M. Sprung, and E. Thilo, Z. Anorg. Allg. Chem. 297, 213 (1958). https://doi.org/10.1002/zaac.19582970310

    Article  CAS  Google Scholar 

  28. T. A. Onufrieva, T. I. Krasnenko, N. A. Zaitseva, et al., J. Phys. Solid State 61, 908 (2019). https://doi.org/10.1134/S1063783419050238

    Article  Google Scholar 

  29. B. V. Slobodin, T. I. Krasnenko, B. E. Dobrynin, et al., Russ. J. Inorg. Chem. 46, 1752 (2001).

    Google Scholar 

  30. E. J. Ahmadov, S. Z. Imamaliyeva, V. A. Gasymov, et al., Russ. J. Inorg. Chem. 66, 538 (2021). https://doi.org/10.1134/S0036023621040021

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are greatly thankful to O.I. Gyrdasova, Candidate of Science in chemistry, for performing electron microscopic and energy-dispersive X-ray spectroscopic studies.

Funding

This work was fulfilled as part of the Government Assignment to the Institute of Solid-State Chemistry, Ural Branch of the Russian Academy of Sciences (project No. АААА-А19-119031890026-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Zaitseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitseva, N.A., Samigullina, R.F., Ivanova, I.V. et al. Phase Equilibria and Chemical Reactions in the Mn2O3–ZnO–SiO2, Mn3О4–ZnO–SiO2, and MnO–ZnO–SiO2 Systems. Russ. J. Inorg. Chem. 68, 1799–1805 (2023). https://doi.org/10.1134/S0036023623602258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602258

Keywords:

Navigation