Skip to main content

Advertisement

Log in

cGAS Mediates the Inflammatory Responses of Human Microglial Cells to Genotoxic DNA Damage

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Genomic instability is a key driving force for the development and progression of many age-related neurodegenerative diseases and central nervous system (CNS) cancers. Recently, the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), has been shown to detect and respond to self-DNA accumulation resulting from DNA damaging insults in peripheral cell types. cGAS has been shown to be important in the responses of microglia to DNA viruses and amyloid beta, and we have reported that it underlies the responses of human microglia to exogenous DNA. However, the role of this cytosolic sensor in the detection of self-DNA by glia is poorly understood and its ability to mediate the cellular responses of human microglia to genotoxic DNA damage has not been established. Here, we describe the ability of ionizing radiation and oxidative stress to elicit genomic DNA damage in human microglial cells and to stimulate the production of key inflammatory mediators by these cells in an NF-kB dependent manner. Importantly, we have utilized CRISPR/Cas9 and siRNA-mediated knockdown approaches and a pharmacological inhibitor of the cGAS adaptor protein stimulator of interferon genes (STING) to demonstrate that the cGAS-STING pathway plays a critical role in the generation of these microglial immune responses to such genotoxic insults. Together, these studies support the notion that cGAS mediates the detection of cytosolic self-DNA by microglia, providing a potential mechanism linking genomic instability to the development of CNS cancers and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

The data used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Zhu, L.-S., D.-Q. Wang, K. Cui, D. Liu, and L.-Q. Zhu. 2019. Emerging perspectives on DNA double-strand breaks in neurodegenerative diseases. Current Neuropharmacology 17: 1146–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Coppedè, F., and L. Migliore. 2015. DNA damage in neurodegenerative diseases. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 776: 84–97.

    Article  PubMed  Google Scholar 

  3. Horn, V., and A. Triantafyllopoulou. 2018. DNA damage signaling and polyploid macrophages in chronic inflammation. Current Opinion in Immunology 50: 55–63.

    Article  CAS  PubMed  Google Scholar 

  4. Taffoni, C., A. Steer, J. Marines, H. Chamma, I.K. Vila, and N. Laguette. 2021. nucleic acid immunity and DNA damage response: new friends and old foes. Frontiers in Immunology 12: 1–10.

    Article  Google Scholar 

  5. Li, T., and Z.J. Chen. 2018. The cGAS-cGAMP-STI NG pathway connects DNA damage to inflammation, senescence, and cancer. Journal of Experimental Medicine 215: 1287–1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krupina, K., A. Goginashvili, and D.W. Cleveland. 2021. Causes and consequences of micronuclei. Current Opinion in Cell Biology 70: 91–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller, K.N., S.G. Victorelli, H. Salmonowicz, N. Dasgupta, T. Liu, J.F. Passos, et al. 2021. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 184: 5506–5526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun, L., J. Wu, F. Du, X. Chen, and Z.J. Chen. 1979. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013 (339): 786–791.

    Google Scholar 

  9. Ablasser, A., M. Goldeck, T. Cavlar, T. Deimling, G. Witte, I. Röhl, et al. 2013. CGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498: 380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun, W., Y. Li, L. Chen, H. Chen, F. You, X. Zhou, et al. 2009. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proceedings of the National Academy of Sciences 106: 8653–8658.

    Article  CAS  Google Scholar 

  11. Wu, J., L. Sun, X. Chen, F. Du, H. Shi, C. Chen, et al. 1979. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013 (339): 826–830.

    Google Scholar 

  12. Zhong, B., Y. Yang, S. Li, Y.Y. Wang, Y. Li, F. Diao, et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29: 538–550.

    Article  CAS  PubMed  Google Scholar 

  13. De Gaetano, A., K. Solodka, G. Zanini, V. Selleri, A.V. Mattioli, M. Nasi, et al. 2021. Molecular mechanisms of mtDNA-mediated inflammation. Cells 10: 2898.

    PubMed  Google Scholar 

  14. Gao, D., T. Li, X.-D. Li, X. Chen, Q.-Z. Li, M. Wight-Carter, et al. 2015. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proceedings of the National Academy of Sciences 112: E5699–E5705.

    Article  CAS  Google Scholar 

  15. Mackenzie, K.J., P. Carroll, C.-A.A. Martin, O. Murina, A. Fluteau, D.J. Simpson, et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548: 461–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar, V. 2021. The trinity of cGAS, TLR9, and ALRs guardians of the cellular galaxy against host-derived self-DNA. Frontiers in Immunology 11: 1–31.

    Article  Google Scholar 

  17. Jakobs, C., S. Perner, and V. Hornung. 2015. AIM2 drives joint inflammation in a self-DNA triggered model of chronic polyarthritis. PLoS One 10: e0131702.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cox, D.J., R.H. Field, D.G. Williams, M. Baran, A.G. Bowie, C. Cunningham, et al. 2015. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia 63: 812–825.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jeffries, A.M., and I. Marriott. 2017. Human microglia and astrocytes express cGAS-STING viral sensing components. Neuroscience Letters 658: 53–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song, X., F. Ma, and K. Herrup. 2019. Accumulation of cytoplasmic DNA due to ATM deficiency activates the microglial viral response system with neurotoxic consequences. The Journal of Neuroscience 39: 6378–6394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jin, M., H. Shiwaku, H. Tanaka, T. Obita, S. Ohuchi, Y. Yoshioka, et al. 2021. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nature Communications 12: 6565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, P.J., Y.F. Hung, H.Y. Liu, and Y.P. Hsueh. 2017. Deletion of the inflammasome sensor Aim2 mitigates Aβ deposition and microglial activation but increases inflammatory cytokine expression in an Alzheimer disease mouse model. NeuroImmunoModulation 24: 29–39.

    Article  CAS  PubMed  Google Scholar 

  23. Rui, W.J., S. Li, L. Yang, Y. Liu, Y. Fan, Y.C. Hu, et al. 2022. Microglial AIM2 alleviates antiviral-related neuro-inflammation in mouse models of Parkinson’s disease. Glia 70: 2409–2425.

    Article  CAS  PubMed  Google Scholar 

  24. Ma, C., S. Li, Y. Hu, Y. Ma, Y. Wu, C. Wu, et al. 2021. AIM2 controls microglial inflammation to prevent experimental autoimmune encephalomyelitis. Journal of Experimental Medicine 218: e20201796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sterka, D., D.M. Rati, and I. Marriott. 2006. Functional expression of NOD2, a novel pattern recognition receptor for bacterial motifs, in primary murine astrocytes. Glia 53: 322–330.

    Article  PubMed  Google Scholar 

  26. Sterka, D., and I. Marriott. 2006. Characterization of nucleotide-binding oligomerization domain (NOD) protein expression in primary murine microglia. Journal of Neuroimmunology 179: 65–75.

    Article  CAS  PubMed  Google Scholar 

  27. Furr, S.R., V. Chauhan, D. Sterka, V. Grdzelishvili, and I. Marriott. 2008. Characterization of retinoic acid-inducible gene-I expression in primary murine glia following exposure to vesicular stomatitis virus. Journal of Neurovirology 14: 503–513.

    Article  CAS  PubMed  Google Scholar 

  28. Gao, P., M. Ascano, Y. Wu, W. Barchet, B.L. Gaffney, T. Zillinger, et al. 2013. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153: 1094–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Orzalli, M.H., N.M. Broekema, B.A. Diner, D.C. Hancks, N.C. Elde, I.M. Cristea, et al. 2015. CGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proceedings of the National Academy of Sciences 112: E1773–E1781.

    Article  CAS  Google Scholar 

  30. Ruangkiattikul, N., A. Nerlich, K. Abdissa, S. Lienenklaus, A. Suwandi, N. Janze, et al. 2017. cGAS-STING-TBK1-IRF3/7 induced interferon-β contributes to the clearing of non tuberculous mycobacterial infection in mice. Virulence 8: 1303–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aguirre, S., P. Luthra, M.T. Sanchez-Aparicio, A.M. Maestre, J. Patel, F. Lamothe, et al. 2017. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nature Microbiology 2: 1–11.

    Article  Google Scholar 

  32. Wong, E.B., B. Montoya, M. Ferez, C. Stotesbury, and L.J. Sigal. 2019. Resistance to ectromelia virus infection requires cGAS in bone marrow-derived cells which can be bypassed with cGAMP therapy. PLoS Pathogens 15: e1008239.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu, Y., K. Song, W. Hao, J. Li, L. Wang, and S. Li. 2022. Nuclear soluble cGAS senses double-stranded DNA virus infection. Communications Biology 5: 1–13.

    Article  Google Scholar 

  34. Reinert, L.S., K. Lopušná, H. Winther, C. Sun, M.K. Thomsen, R. Nandakumar, et al. 2016. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS. Nature Communications 7: 13348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, Q., Z. Tang, R. An, L. Ye, and B. Zhong. 2020. USP29 maintains the stability of cGAS and promotes cellular antiviral responses and autoimmunity. Cell Research 30: 914–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fruhwürth, S., L.S. Reinert, C. Öberg, M. Sakr, M. Henricsson, H. Zetterberg, et al. 2023. TREM2 is down-regulated by HSV1 in microglia and involved in antiviral defense in the brain. https://www.science.org.

    Book  Google Scholar 

  37. Hou, Y., Y. Wei, S. Lautrup, B. Yang, Y. Wang, S. Cordonnier, et al. 2021. NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS–STING. Proceedings of the National Academy of Sciences 118: e2011226118. https://pnas.org/doi/full/10.1073/pnas.2011226118.

  38. Xie, X., G. Ma, X. Li, J. Zhao, Z. Zhao, and J. Zeng. 2023. Activation of innate immune cGAS-STING pathway contributes to Alzheimer’s pathogenesis in 5×FAD mice. Nature Aging 3: 202–212. https://www.nature.com/articles/s43587-022-00337-2.

    Article  CAS  PubMed  Google Scholar 

  39. Suptela, A.J., and I. Marriott. 2023. Cytosolic DNA sensors and glial responses to endogenous DNA. Frontiers in Immunology 14: 1130172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gulen, M.F., N. Samson, A. Keller, M. Schwabenland, C. Liu, S. Glück, et al. 2023. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature 620: 374–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Johnson, M.B., J.R. Halman, A.R. Burmeister, S. Currin, E.F. Khisamutdinov, K.A. Afonin, et al. 2020. Retinoic acid inducible gene-I mediated detection of bacterial nucleic acids in human microglial cells. Journal of Neuroinflammation 17: 1–14.

    Article  Google Scholar 

  42. Burmeister, A.R., M.B. Johnson, V.S. Chauhan, M.J. Moerdyk-Schauwecker, A.D. Young, I.D. Cooley, et al. 2017. Human microglia and astrocytes constitutively express the neurokinin-1 receptor and functionally respond to substance P. Journal of Neuroinflammation 14: 245.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jeffries, A.M., Nitika, A.W. Truman, and I. Marriott. 2020. The intracellular DNA sensors cGAS and IFI16 do not mediate effective antiviral immune responses to HSV-1 in human microglial cells. Journal of Neurovirology 26: 544–555. https://link.springer.com/10.1007/s13365-020-00852-1.

  44. Garcia-Mesa, Y., T.R. Jay, M.A. Checkley, B. Luttge, C. Dobrowolski, S. Valadkhan, et al. 2017. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. Journal of Neurovirology 23: 47–66.

    Article  CAS  PubMed  Google Scholar 

  45. Moravan, M.J., J.A. Olschowka, J.P. Williams, and M.K. O’Banion. 2011. Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain. Radiation Research 176: 459–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mueller, S., G. Millonig, and G.N. Waite. 2009. The GOX/CAT system: a novel enzymatic method to independently control hydrogen peroxide and hypoxia in cell culture. Advances in Medical Sciences 54: 121–135.

    Article  CAS  PubMed  Google Scholar 

  47. Porciani, D., L. Tedeschi, L. Marchetti, L. Citti, V. Piazza, F. Beltram, et al. 2015. Aptamer-mediated codelivery of doxorubicin and NF-κB decoy enhances chemosensitivity of pancreatic tumor cells. Molecular Therapy-Nucleic Acids 4: e235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ke, W., E. Hong, R.F. Saito, M.C. Rangel, J. Wang, M. Viard, et al. 2019. RNA-DNA fibers and polygons with controlled immunorecognition activate RNAi, FRET and transcriptional regulation of NF-κB in human cells. Nucleic Acids Research 47: 1350–1361.

    Article  CAS  PubMed  Google Scholar 

  49. Shlyakhtenko, L.S., A.A. Gall, A. Filonov, Z. Cerovac, A. Lushnikov, and Y.L. Lyubchenko. 2003. Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97: 279–287.

    Article  CAS  PubMed  Google Scholar 

  50. Ran, F.A., P.D. Hsu, J. Wright, V. Agarwala, D.A. Scott, and F. Zhang. 2013. Genome engineering using the CRISPR-Cas9 system. Nature Protocols 8: 2281–2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Einor, D., A. Bonisoli-Alquati, D. Costantini, T.A. Mousseau, and A.P. Møller. 2016. Ionizing radiation, antioxidant response and oxidative damage: a meta-analysis. Science of the Total Environment 548–549: 463–471.

    Article  PubMed  Google Scholar 

  52. Maekawa, H., T. Inoue, H. Ouchi, T.M. Jao, R. Inoue, H. Nishi, et al. 2019. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Reports 29: 1261–1273.e6.

  53. Liu, S., M. Feng, and W. Guan. 2016. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond. International Journal of Cancer 139: 736–741.

    Article  CAS  PubMed  Google Scholar 

  54. Wu, Z., A.G. Sainz, and G.S. Shadel. 2021. Mitochondrial DNA: cellular genotoxic stress sentinel. Trends in Biochemical Sciences 46: 812–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. de Oliveira Mann, C.C., and P.J. Kranzusch. 2017. cGAS conducts micronuclei DNA surveillance. Trends in Cell Biology 27: 697–698.

    Article  PubMed  Google Scholar 

  56. Zhao, Y., B. Liu, L. Xu, S. Yu, J. Fu, J. Wang, et al. 2021. ROS-induced mtDNA release: the emerging messenger for communication between neurons and innate immune cells during neurodegenerative disorder progression. Antioxidants 10: 1917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Motwani, M., and K.A. Fitzgerald. 2017. cGAS Micro-manages genotoxic stress. Immunity 47: 616–617.

    Article  CAS  PubMed  Google Scholar 

  58. Bakhoum, S.F., B. Ngo, A.M. Laughney, J.A. Cavallo, C.J. Murphy, P. Ly, et al. 2018. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553: 467–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sharma, M., S. Rajendrarao, N. Shahani, U.N. Ramírez-Jarquín, and S. Subramaniam. 2020. Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease. Proceedings of the National Academy of Sciences 117: 15989–15999.

    Article  Google Scholar 

  60. Mohr, L., E. Toufektchan, P. von Morgen, K. Chu, A. Kapoor, and J. Maciejowski. 2021. ER-directed TREX1 limits cGAS activation at micronuclei. Molecular Cell 81: 724–738.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harding, S.M., J.L. Benci, J. Irianto, D.E. Discher, A.J. Minn, and R.A. Greenberg. 2017. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548: 466–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao, M., F. Wang, J. Wu, Y. Cheng, Y. Cao, X. Wu, et al. 2021. CGAS is a micronucleophagy receptor for the clearance of micronuclei. Autophagy 17: 3976–3991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. West, A.P., W. Khoury-Hanold, M. Staron, M.C. Tal, C.M. Pineda, S.M. Lang, et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520: 553–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guo, Y., R. Gu, D. Gan, F. Hu, G. Li, and G. Xu. 2020. Mitochondrial DNA drives noncanonical inflammation activation via cGAS–STING signaling pathway in retinal microvascular endothelial cells. Cell Communication and Signaling 18: 1–12.

  65. Huang, L.S., Z. Hong, W. Wu, S. Xiong, M. Zhong, X. Gao, et al. 2020. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 52: 475–486.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nadalutti, C.A., S. Ayala-Peña, and J.H. Santos. 2022. Mitochondrial DNA damage as driver of cellular outcomes. American Journal of Physiology. Cell Physiology 322: C136–C150.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, W., G. Li, R. Luo, J. Lei, Y. Song, B. Wang, et al. 2022. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Experimental & Molecular Medicine 54: 129–142.

    Article  CAS  Google Scholar 

  68. Chen, H., H. Chen, J. Zhang, Y. Wang, A. Simoneau, H. Yang, et al. 2020. cGAS suppresses genomic instability as a decelerator of replication forks. Science Advances 6: eabb8941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, H., H. Zhang, X. Wu, D. Ma, J. Wu, L. Wang, et al. 2018. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563: 131–136.

    Article  CAS  PubMed  Google Scholar 

  70. Jiang, H., X. Xue, S. Panda, A. Kawale, R.M. Hooy, F. Liang, et al. 2019. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO Journal 38: 1–17.

    Article  Google Scholar 

  71. Hinkle, J.T., J. Patel, N. Panicker, S.S. Karuppagounder, D. Biswas, B. Belingon, et al. 2022. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proceedings of the National Academy of Sciences 119: 1–8.

    Article  Google Scholar 

Download references

Funding

This material is based upon work supported in whole or part by the North Carolina Biotechnology Center (to IM), the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award number R03 NS111260 (to CR), and by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35 GM139587 (to KAA).

Author information

Authors and Affiliations

Authors

Contributions

AJS carried out the in vitro experiments, specific capture ELISAs, immunoblot analyses, and performed data analysis. IM, CR, and SY conceived the study, contributed to the experimental design, and drafted the manuscript. KAA and YR designed, manufactured, and characterized the decoy DNA deploying constructs employed in these studies. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ian Marriott.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suptela, A.J., Radwan, Y., Richardson, C. et al. cGAS Mediates the Inflammatory Responses of Human Microglial Cells to Genotoxic DNA Damage. Inflammation (2023). https://doi.org/10.1007/s10753-023-01946-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-023-01946-8

KEY WORDS

Navigation