Skip to main content
Log in

Diamond sources of the Juína region, Amazonian craton: textural and mineral chemical characteristics of Kimberley-type pyroclastic kimberlites

  • Research
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Juína is the second-largest diamond-producing municipality in Brazil and is globally known for its outstanding sublithospheric diamond occurrences in both placer and kimberlite-hosted deposits. However, the scarcity of petrological data for Juína kimberlite pipes hampers understanding the nature and mantle source of these primary diamond sources in this region. Here, we present a textural and mineralogical study of ten kimberlite pipes from the Juína area. Based on petrographic features and mineral compositions, we interpret the studied Juína pipes as archetypal kimberlites with pyroclastic emplacement styles filled with resedimented volcaniclastic kimberlite and Kimberley-type pyroclastic kimberlite variants. The composition and texture of the magmatic phases, particularly spinel and phlogopite, suggest crystallisation from kimberlite sensu stricto magmas. The presence of high-Na eclogitic garnets and the absence of high-Cr low-Ca G10 garnets within the mantle xenocryst suite suggest the likelihood of eclogitic diamonds among Juína's lithospheric diamond populations. The Zr and Y contents, Ti/Eu and Zr/Hf ratios in the peridotite garnets, and Zr contents, Ca/Al, LaN/YbN (primitive-mantle normalised), Ti/Eu, and Zr/Hf ratios in the clinopyroxenes suggest a solid connection to kimberlite melt-related mantle metasomatism. Thermobarometry calculations indicate a relatively narrow stability window (825–936 ºC and 32–36 kbar) for lithospheric diamonds in the Juína region. Our findings have important implications for regional diamond exploration programs, shedding light on the primary sources of Juína's diamonds and contributing to understanding the deep geological processes in the underlying lithospheric mantle beneath the Amazonian craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

All data presented in the text of the article are fully available in the supplementary materials.

References

  • Abdel-Rahman AFM (1994) Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J Petrol 35(2):525–541

    Article  ADS  CAS  Google Scholar 

  • Abersteiner A, Kamenetsky VS, Goemann K et al (2019) Composition and emplacement of the Benfontein kimberlite sill complex (Kimberley, South Africa): Textural, petrographic and melt inclusion constraints. Lithos 324–325:297–314

    Article  ADS  Google Scholar 

  • Abersteiner A, Kamenetsky VS, Goemann K et al (2022) Olivine in kimberlites: Magma evolution from deep mantle to eruption. J Petrol 63(7):egac055

    Article  Google Scholar 

  • Almeida V, Rodrigues J, Neto IC et al (2022) Composition and P-T conditions of the lithospheric mantle beneath the Azimuth 125o Lineament, Northern and Southeastern Brazil: constraints from peridotite xenoliths enclosed in diamond-bearing kimberlites. J Geol Surv Braz 5(3):177–203

    Article  Google Scholar 

  • Andrade KW (2012) Química de minerais indicadores de intrusões kimberlíticas com ênfase na província diamantífera Serra da Canastra (MG): importância na prospecção de intrusões férteis. MSc. thesis, Universidade Federal de Minas Gerais

  • Bahia RBC, Martins Neto MA, Barbosa MSC et al (2006) Revisão estratigráfica da bacia dos parecis-amazônia. Rev Bras Geoc 36(4):692–703

    Article  Google Scholar 

  • Berman RG (1991) Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications. Can Mineral 29(4):833–855

    Google Scholar 

  • Canil D (1999) The Ni-in-garnet geothermometer: calibration at natural abundances. Contrib Mineral Petrol 136(3):240–246

    Article  ADS  CAS  Google Scholar 

  • Carvalho JB (1997) Petrologia de xenólitos mantélicos da Província Alto Paranaíba, Minas Gerais e Goiás. DSc. thesis, Universidade de Brasília

  • Castillo-Oliver M, Melgarejo JC, Galí S et al (2017) Use and misuse of Mg- and Mn-rich ilmenite in diamond exploration: A petrographic and trace element approach. Lithos 292:348–363

    Article  ADS  Google Scholar 

  • Chalapathi Rao N, Lehmann B, Belyatsky B et al (2017) The Late Cretaceous diamondiferous pyroclastic kimberlites from the Fort à la Corne (FALC) field, Saskatchewan craton, Canada: Petrology, geochemistry and genesis. Gondwana Res 44:236–257

    Article  ADS  CAS  Google Scholar 

  • Chaves MLSC, Andrade KW, Benitez L, Brandão PRG (2008) Província diamantífera da serra da canastra e o kimberlito canastra-1: Primeira fonte primária de diamantes economicamente viável do país. Geociencias 27(3):299–317

    Google Scholar 

  • Cordani UG, Ramos VA, Fraga LM et al (2016) Tectonic map of South America. https://rigeo.cprm.gov.br/handle/doc/16750. Accessed 23 Feb 2023

  • Costa VS (2013) Mineralogia e petrologia de xenólitos mantélicos da Província Kimberlítica de Juína, MT. DSc. thesis, Universidade de São Paulo

  • Creighton S, Stachel T, Matveev S et al (2009) Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contrib Mineral Petrol 157:491–504

    Article  ADS  CAS  Google Scholar 

  • Dawson JB, Smith JV (1977) The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochem Cosmochem Acta 41(2):309–310

    Article  ADS  CAS  Google Scholar 

  • Deng L, Liu Y, Zong K et al (2017) Trace element and Sr isotope records of multi-episode carbonatite metasomatism on the eastern margin of the North China Craton. Geochem Geophys Geosyst 18(1):220–237

    Article  ADS  CAS  Google Scholar 

  • Dodge FCW, Smith VC, Mays RE (1969) Biotites from granitic rocks of the Central Sierra Nevada Batholith, California. J Petrol 10(2):250–271

    Article  ADS  CAS  Google Scholar 

  • Donatti-Filho JP (2011) Petrogênese do campo kimberlítico Braúna, Cráton do São Francisco. DSc. thesis, Universidade Estadual de Campinas

  • Donatti-Filho JP, Tappe S, Oliveira EP, Heaman LM (2012) Age and origin of the Neoproterozoic Brauna kimberlites: Melt generation within the metasomatized base of the São Francisco craton, Brazil. Chem Geol 353:19–35

    Article  ADS  Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51(361):431–435

    Article  CAS  Google Scholar 

  • Erlank A, Waters F, Hawkesworth C et al (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes. In: Menzies MA, Hawkesworth CJ (eds) Mantle Metasomatism. Academic Press, United States, pp 221–311

    Google Scholar 

  • Ferracutti GR, Gargiulo MF, Ganuza ML et al (2014) Determination of the spinel group end-members based on electron microprobe analyses. Miner Petrol 109:153–160

    Article  Google Scholar 

  • Fipke CE, Gurney JJ, Moore RO (1995) Diamond exploration techniques emphasising indicator mineral geochemistry and Canadian examples. Geol Surv Can Bull 423:96

    Google Scholar 

  • Fitzpayne A, Giuliani A, Hergt J et al (2018a) New geochemical constraints on the origins of MARID and PIC rocks: Implications for mantle metasomatism and mantle-derived potassic magmatism. Lithos 318–319:478–493

    Article  ADS  Google Scholar 

  • Fitzpayne A, Giuliani A, Phillips D et al (2018b) Kimberlite-related metasomatism recorded in MARID and PIC mantle xenoliths. Mineral Petrol 112(S1):71–84

    Article  ADS  CAS  Google Scholar 

  • Fulop A, Kopylova M, Kurszlaukis S et al (2018) Petrography of Snap Lake kimberlite dyke (Northwest Territories, Canada) and its interaction with country rock granitoids. J Petrol 59(12):2493–2518

    Article  ADS  CAS  Google Scholar 

  • Gervasoni F, Jalowitzki T, Rocha MP et al (2022) Recycling process and proto-kimberlite melt metasomatism in the lithosphere-asthenosphere boundary beneath the Amazonian Craton recorded by garnet xenocrysts and mantle xenoliths from the Carolina kimberlite. Geosci Front 13(5):101429

    Article  CAS  Google Scholar 

  • Gibson SA, Thompson RN, Leonardos OH et al (1995) The late cretaceous impact of the trindade mantle plume: Evidence from large-volume, mafic, potassic magmatism in SE Brazil. J Petrol 36(1):189–229

    Article  ADS  CAS  Google Scholar 

  • Giuliani A (2018) Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos 312–313:322–342

    Article  ADS  Google Scholar 

  • Giuliani A, Pearson G (2019) Kimberlites: From deep earth to diamond mines provided. Elements 15(6):377–380

    Article  ADS  CAS  Google Scholar 

  • Grégoire M, Bell D, le Roex AP (2002) Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib Mineral Petrol 142(5):603–625

    Article  ADS  Google Scholar 

  • Grégoire M, Bell DR, le Roex AP (2003) Garnet lherzolites from the Kaapvaal Craton (South Africa): Trace element evidence for a metasomatic history. J Petrol 44(4):629–657

    Article  ADS  Google Scholar 

  • Griffin WL, Ryan CG (1995) Trace elements in indicator minerals : area selection and target evaluation in diamond exploration. J Geochem Explor 53(1–3):311–337

    Article  CAS  Google Scholar 

  • Griffin WL, Ryan CG, O’Reilly SY et al (1991) Trace elements in garnets from tanzanian kimberlites: Relation to diamond content and tectonic setting. 5th Int Kimb Conf: Ext Abstr 145–147

  • Griffin WL, Sobolev N, Ryan CG et al (1993) Trace elements in garnets and chromites: Diamond formation in the Siberian lithosphere. Lithos 29(3–4):235–256

    Article  ADS  CAS  Google Scholar 

  • Griffin WL, Moore RO, Ryan CG et al (1995) Geochemistry of magnesian ilmenite megacrysts from southern African kimberlites. 6th Int Kimb Conf: Ext Abstr 196–197

  • Griffin WL, Shee SR, Ryan CG, Win TT, Wyatt BA (1999) Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contrib Mineral Petrol 134(2–3):232–250

    Article  ADS  CAS  Google Scholar 

  • Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77(1–4):841–857

    Article  ADS  Google Scholar 

  • Gurney JJ, Zweistra P (1995) The interpretation of the major element compositions of mantle minerals in diamond exploration. J Geochem Explor 53(1–3):293–309

    Article  CAS  Google Scholar 

  • Haggerty SE (1975) The chemistry and genesis of opaque minerals in kimberlites. Phys Chem Earth 9:295–307

    Article  ADS  CAS  Google Scholar 

  • Hardman MF, Pearson DG, Stachel T, Sweeney RJ (2018) Statistical approaches to the discrimination of mantle- and crust-derived low-Cr garnets using major and trace element data. Mineral Petrol 112:697–706

    Article  ADS  CAS  Google Scholar 

  • Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Plan Sci Lett 307(1–2):59–70

    Article  ADS  CAS  Google Scholar 

  • Heaman L, Teixeira NA, Gobbo L, Gaspar JC (1998) U-Pb mantle zircon ages for kimberlites from the Juina Paranatinga Provinces, Brazil. 7th Int Kimb Conf: Ext Abstr 322–324

  • Hoare BC, O’Sullivan G, Tomlinson EL (2021) Metasomatism of the Kaapvaal Craton during Cretaceous intraplate magmatism revealed by combined zircon U-Pb isotope and trace element analysis. Chem Geol. https://doi.org/10.1016/j.chemgeo.2021.120302

    Article  Google Scholar 

  • Hunt L, Stachel T, Morton R et al (2009) The Carolina kimberlite, Brazil - Insights into an unconventional diamond deposit. Lithos 112:843–851

    Article  ADS  Google Scholar 

  • Kaminsky F (2009) A technical report on the Juína diamond project, Juína, Mato Grosso, Brazil. Technical Report 43–101 for Diamond International Exploration Inc, 89 p

  • Kaminsky FV, Belousova EA (2009) Manganoan ilmenite as kimberlite/diamond indicator mineral. Russ Geol Geophys 50(12):1212–1220

    Article  ADS  Google Scholar 

  • Kaminsky FV, Zakharchenko O, Davies R et al (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib Miner Petrol 140(6):734–753

    Article  ADS  CAS  Google Scholar 

  • Kaminsky FV, Sablukov SM, Belousova EA et al (2010) Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. Lithos 114(1–2):16–29

    Article  ADS  CAS  Google Scholar 

  • Kargin AV, Sazonova LV, Nosova AA, Tretyachenko VV (2016) Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: Evidence for mantle metasomatism associated with kimberlite melts. Lithos 262:442–455

    Article  ADS  CAS  Google Scholar 

  • Kjarsgaard BA, de Wit M, Heaman LM et al (2022) A review of the geology of global diamond mines and deposits. Rev Mineral Geochem 88(1):1–117

    Article  Google Scholar 

  • Kostrovitsky SI, Malkovets VG, Verichev EM et al (2004) Megacrysts from the Grib kimberlite pipe (Arkhangelsk Province, Russia). Lithos 77(1–4):511–523

    Article  ADS  CAS  Google Scholar 

  • Kostrovitsky SI, Yakovlev DA, Soltys A et al (2020) A genetic relationship between magnesian ilmenite and kimberlites of the Yakutian diamond fields. Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2020.103419

    Article  Google Scholar 

  • Martins EG, Abdallah S (2007) Geologia e Recursos Minerais da Folha Juína (SC.21-Y-C). CPRM. https://rigeo.cprm.gov.br/handle/doc/10281. Accessed 23 Feb 2023

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Article  ADS  CAS  Google Scholar 

  • Medeiros KA, Costa MMD (2019) Diamante. In: Costa MMD, Medeiros KA, Lima TM (eds) Sumário Mineral 2017. ANM, Brasília, pp 99–101

  • Mitchell RH (1973) Magnesian ilmenite and its role in kimberlite petrogenesis. J Geol 81(3):301–311

    Article  ADS  CAS  Google Scholar 

  • Mitchell RH (1986) Kimberlites: mineralogy, geochemistry, and petrology. Plenum Press, New York, p 442

    Book  Google Scholar 

  • Mitchell RH (1995) Kimberlites, orangeites, and related rocks. Plenum Press, New York, p 410

    Book  Google Scholar 

  • Mitchell RH, Giuliani A, O’Brien H (2019) What is a kimberlite? petrology and mineralogy of hypabyssal kimberlites. Elements 15(6):381–386

    Article  ADS  CAS  Google Scholar 

  • Nannini F, Cabral Neto I, Silveira FV et al (2017) Áreas kimberlíticas e diamantíferas do estado de Mato Grosso. CPRM. http://rigeo.cprm.gov.br/jspui/bitstream/doc/17618/1/irm_areas_kimberl_diamant_mt.pdf. Accessed 23 Feb 2023

  • Nimis P (1998) Evaluation of diamond potential from the composition of peridotitic chromian diopside. Eur J Mineral 10(3):505–519

    Article  CAS  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139(5):541–554

    Article  ADS  CAS  Google Scholar 

  • Paton C, Hellstrom J, Paul B et al (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal Spectrom. https://doi.org/10.1039/c1ja10172b

    Article  Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: Xenoliths and diamonds. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, Elsevier, pp 171–275. https://doi.org/10.1016/B0-08-043751-6/02005-3

  • Pearson DG, Brenker FE, Nestola F et al (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507(7491):221–224

    Article  ADS  CAS  PubMed  Google Scholar 

  • Pearson DG, Scott JM, Liu J et al (2021) Deep continental roots and cratons. Nature 596(7871):199–210

    Article  ADS  CAS  PubMed  Google Scholar 

  • Robles-Cruz SE, Watangua M, Isidoro L et al (2009) Contrasting compositions and textures of ilmenite in the Catoca kimberlite, Angola, and implications in exploration for diamond. Lithos 112:966–975

    Article  ADS  Google Scholar 

  • Roeder PL, Schulze DJ (2008) Crystallization of groundmass spinel in kimberlite. J Petrol 49(8):1473–1495

    Article  ADS  CAS  Google Scholar 

  • Rudnick RL, McDonough WF, Chappell BC (1993) Carbonatite metasomatism in the northern Tanzanian mantle. Earth Plan Sci Lett 114:463–475. https://doi.org/10.1016/0012-821X(93)90076-L

    Article  ADS  CAS  Google Scholar 

  • Ryan CG, Griffin WL, Pearson NJ (1996) Garnet geotherms: Pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. J Geophys Res: Solid Earth 101(B3):5611–5625

    Article  CAS  Google Scholar 

  • Sarkar S, Giuliani A, Phillips D, Howarth GH, Ghosh S, Dalton H (2022) Sublithospheric melt input in cratonic lamproites. Geol 50(11):1296–1300

    Article  ADS  CAS  Google Scholar 

  • Schulze D (2003) A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos 71:195–213

    Article  ADS  CAS  Google Scholar 

  • Scott Smith BH, Nowicki TE, Russell JK et al (2013) Kimberlite terminology and classification. 10th Int Kimb Conf: Ext Abstr. https://doi.org/10.1007/978-81-322-1173-0_1. Accessed 23 Feb 2023

  • Scott Smith BH, Nowicki TE, Russell JK et al (2018) A glossary of kimberlite and related terms. Scott-Smith Petrology Inc., North Vancouver, Part 1 – 144 pp, Part 2 – 59 pp, Part 3 – 56 pp

  • Sharma A, Kumar A, Pankaj P et al (2019) Petrology and Sr-Nd isotope systematics of the Ahobil kimberlite (Pipe-16) from the Wajrakarur field, Eastern Dharwar craton, southern India. Geosci Front 10(3):1167–1186

    Article  CAS  Google Scholar 

  • Shu Q, Brey GP (2015) Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts : Temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth Plan Sci Lett 418:27–39

    Article  ADS  CAS  Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds — Constraints from mineral inclusions. Ore Geol Rev 34(1–2):5–32

    Article  Google Scholar 

  • Stachel T, Aulbach S, Brey GP et al (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos 77(1–4):1–19

    Article  ADS  CAS  Google Scholar 

  • Sudholz ZJ, Yaxley GM, Jaques AL, Brey GP (2021) Experimental recalibration of the Cr-in-clinopyroxene geobarometer: improved precision and reliability above 4.5 GPa. Contrib Mineral Petrol 176:11

    Article  ADS  CAS  Google Scholar 

  • Svisero DP (1978) Composição química, origem e significado geológico de inclusões minerais de diamantes do Brasil. DSc. thesis, Universidade de São Paulo

  • Svisero DP, Shigley JE, Weldon R (2017) Brazilian diamonds: a historical and recent perspective. Gems Gemol. https://www.gia.edu/gems-gemology/spring-2017-brazilian-diamonds. Accessed 23 Feb 2023

  • Tappe S, Jenner GA, Foley SF et al (2004) Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province. Lithos 76(1–4):491–518

    Article  ADS  CAS  Google Scholar 

  • Tappert R, Stachel T, Harris TW et al (2006) Placer diamonds from Brazil: Indicators of the composition of the earth’s mantle and the distance to their kimberlitic sources. Soc Econ Geol 101:453–470

    Article  CAS  Google Scholar 

  • Tassinari CCG, Macambira MJB (1999) Geochronological provinces of the Amazonian Craton. Epis-Newsmag Inter Union Geol Sci 22(3):174–182

    Google Scholar 

  • Teixeira NA, Gaspar JC, Oliveira ALAM et al (1998a) Morphology of the Juína maars. 7th Int Kimb Conf: Ext Abstr 902–904

  • Teixeira NA, Gaspar JC, Waissel O et al (1998b) Geology of the Juina diamondiferous province. 7th Int Kimb Conf: Ext Abstr 905–907

  • Wyatt BA, Baumgartner M, Anckar E, Grutter H (2004) Compositional classification of “kimberlitic” and “non-kimberlitic” ilmenite. Lithos 77(1–4):819–840

    Article  ADS  CAS  Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Plan Sci Lett 107(2):305–317. https://doi.org/10.1016/0012-821X(91)90078-V

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marcos Mansueto, Leandro de Moraes, Isaac Sayeg and Mark Labbe for lab support. In addition, the authors also thank the reviewers Adam Abersteiner and Ashutosh Pandey for valuable improvements to this article. We also appreciate the editorial handling and contributions from Lutz Nasdala. ICN thanks the Geological Survey of Brazil – SGB/CPRM for granting permission and releasing the samples to develop this research. This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (2019/22084-8) and a Natural Sciences and Engineering Research Council of Canada – NSERC Discovery grant to Pearson.

Funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (2019/22084–8) and a Natural Sciences and Engineering Research Council of Canada – NSERC Discovery grant to Pearson.

Author information

Authors and Affiliations

Authors

Contributions

I.C. designed the study, acquired and interpreted data, wrote the main manuscript text, and prepared all figures. E.R. and G.P. designed and supervised the study, interpreted data, and wrote the main manuscript text. Y.L. acquired data. R.A., F.S. and V.A. interpreted data and wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Izaac Cabral-Neto.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Editorial handling: L. Nasdala

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral-Neto, I., Ruberti, E., Pearson, D.G. et al. Diamond sources of the Juína region, Amazonian craton: textural and mineral chemical characteristics of Kimberley-type pyroclastic kimberlites. Miner Petrol 118, 1–22 (2024). https://doi.org/10.1007/s00710-023-00849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-023-00849-8

Keywords

Navigation