Skip to main content

Advertisement

Log in

Neutrophil Extracellular Traps Induce Pyroptosis of Rheumatoid Arthritis Fibroblast-Like Synoviocytes via the NF-κB/Caspase 3/GSDME Pathway

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is an enduring, progressive autoimmune disorder. Abnormal activation of fibroblast-like synoviocytes (FLSs) has been proposed as the initiating factor for inflammation of the synovium and bone destruction. Neutrophil extracellular traps (NETs), which are web-like structures composed of DNA, histones, and granule proteins, are involved in the development of RA in multiple aspects. Pyroptosis, gasdermin-mediated inflammatory programmed cell death, plays a vital function in the etiopathogenesis of RA. However, the exact mechanism underlying NETs-induced pyroptosis in FLSs of RA and its impact on cellular pathogenic behavior remain undefined. In this study, we demonstrated that gasdermin E (GSDME) expression was upregulated in RA plasma and synoviums, which was positively correlated with the elevated cell-free DNA (cfDNA) and citrullinated histone 3 (Cit H3) levels in the plasma. Additionally, in vitro experiments have shown that NETs triggered caspase 3/GSDME-mediated pyroptosis in RA-FLSs, characterized by decreased cell viability, cell membrane blebbing, and rupture, as well as increased levels of pyroptosis-related proteins and pro-inflammatory cytokines. Again, silencing GSDME significantly inhibited pyroptosis and suppressed the migration, invasion, and secretion of pro-inflammatory cytokines in RA-FLSs. Furthermore, we also found that the nuclear factor-kappa B (NF-κB) pathway, serving as an upstream mechanism, was involved in FLS pyroptosis. In conclusion, our investigation indicated that NETs could induce RA-FLS pyroptosis and facilitate phenotypic transformation through targeting the NF-κB/caspase 3/GSDME axis. This is the first to explore the crucial role of NETs-induced FLS pyroptosis in the progression of RA, providing novel targets for the clinical management of refractory RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The data and materials used in this study are available from the corresponding authors upon reasonable request.

References

  1. Nygaard, G., and G.S. Firestein. 2020. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nature Reviews Rheumatology 16 (6): 316–333. https://doi.org/10.1038/s41584-020-0413-5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lillegraven, S., F.H. Prince, N.A. Shadick, V.P. Bykerk, B. Lu, M.L. Frits, et al. 2012. Remission and radiographic outcome in rheumatoid arthritis: application of the 2011 ACR/EULAR remission criteria in an observational cohort. Annals of the Rheumatic Diseases 71 (5): 681–686. https://doi.org/10.1136/ard.2011.154625.

    Article  CAS  PubMed  Google Scholar 

  3. Komatsu, N., and H. Takayanagi. 2022. Mechanisms of joint destruction in rheumatoid arthritis-immune cell-fibroblast-bone interactions. Nature Reviews Rheumatology 18 (7): 415–429. https://doi.org/10.1038/s41584-022-00793-5.

    Article  CAS  PubMed  Google Scholar 

  4. Bartok, B., and G.S. Firestein. 2010. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunological Reviews 233 (1): 233–255. https://doi.org/10.1111/j.0105-2896.2009.00859.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, Z., D. Ma, H. Yang, J. Gao, G. Zhang, K. Xu, et al. 2021. Fibroblast-like synoviocytes in rheumatoid arthritis: surface markers and phenotypes. International Immunopharmacology 93: 107392. https://doi.org/10.1016/j.intimp.2021.107392.

    Article  CAS  PubMed  Google Scholar 

  6. Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D.S. Weiss, et al. 2004. Neutrophil extracellular traps kill bacteria. Science 303 (5663): 1532–1535. https://doi.org/10.1126/science.1092385.

    Article  CAS  PubMed  Google Scholar 

  7. Apel, F., A. Zychlinsky, and E.F. Kenny. 2018. The role of neutrophil extracellular traps in rheumatic diseases. Nature Reviews Rheumatology 14 (8): 467–475. https://doi.org/10.1038/s41584-018-0039-z.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, W., Q. Wang, Y. Ke, and J. Lin. 2018. Neutrophil function in an inflammatory milieu of rheumatoid arthritis. Journal of Immunology Research 2018: 8549329. https://doi.org/10.1155/2018/8549329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khandpur, R., C. Carmona-Rivera, A. Vivekanandan-Giri, A. Gizinski, S. Yalavarthi, J.S. Knight, et al. 2013. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Science Translational Medicine 5 (178): 178ra40. https://doi.org/10.1126/scitranslmed.3005580.

  10. Carmona-Rivera, C., P.M. Carlucci, R.R. Goel, E. James, S.R. Brooks, C. Rims, et al. 2020. Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis. JCI Insight 5 (13): e139388. https://doi.org/10.1172/jci.insight.139388.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carmona-Rivera, C., P.M. Carlucci, E. Moore, N. Lingampalli, H. Uchtenhagen, E. James, et al. 2017. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Science Immunology 2 (10): eaag3358. https://doi.org/10.1126/sciimmunol.aag3358.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wigerblad, G., and M.J. Kaplan. 2023. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nature Reviews Immunology 23 (5): 274–288. https://doi.org/10.1038/s41577-022-00787-0.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, X., S. Xia, Z. Zhang, H. Wu, and J. Lieberman. 2021. Channelling inflammation: gasdermins in physiology and disease. Nature Reviews Drug Discovery 20 (5): 384–405. https://doi.org/10.1038/s41573-021-00154-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, P., X. Zhang, N. Liu, L. Tang, C. Peng, and X. Chen. 2021. Pyroptosis: mechanisms and diseases. Signal Transduction and Targeted Therapy 6 (1): 128. https://doi.org/10.1038/s41392-021-00507-5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang, P., W. Feng, C. Li, Y. Kou, D. Li, S. Liu, et al. 2021. LPS induces fibroblast-like synoviocytes RSC-364 cells to pyroptosis through NF-κB mediated dual signalling pathway. Journal of Molecular Histology 52 (4): 661–669. https://doi.org/10.1007/s10735-021-09988-8.

    Article  CAS  PubMed  Google Scholar 

  16. Wu, T., X. Zhang, Q. Zhang, Y. Zou, J. Ma, L. Chen, et al. 2022. Gasdermin-E mediated pyroptosis-a novel mechanism regulating migration, invasion and release of inflammatory cytokines in rheumatoid arthritis fibroblast-like synoviocytes. Frontiers in Cell and Developmental Biology 9: 810635. https://doi.org/10.3389/fcell.2021.810635.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhai, Z., F. Yang, W. Xu, J. Han, G. Luo, Y. Li, et al. 2022. Attenuation of rheumatoid arthritis through the inhibition of tumor necrosis factor-Induced caspase 3/gasdermin E-mediated pyroptosis. Arthritis & Rheumatology 74 (3): 427–440. https://doi.org/10.1002/art.41963.

    Article  CAS  Google Scholar 

  18. Wu, X., K. Li, H. Yang, B. Yang, X. Lu, L. Zhao, et al. 2020. Complement C1q synergizes with PTX3 in promoting NLRP3 inflammasome over-activation and pyroptosis in rheumatoid arthritis. Journal of Autoimmunity 106: 102336. https://doi.org/10.1016/j.jaut.2019.102336.

    Article  PubMed  Google Scholar 

  19. Aletaha, D., T. Neogi, A.J. Silman, J. Funovits, D.T. Felson, C.O. Bingham, et al. 2010. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Annals of the Rheumatic Diseases 69 (9): 1580–1588. https://doi.org/10.1136/ard.2010.138461.

    Article  PubMed  Google Scholar 

  20. Brinkmann, V., B. Laube, U. Abu Abed, C. Goosmann, and A. Zychlinsky. 2010. Neutrophil extracellular traps: how to generate and visualize them. Journal of Visualized Experiments (36): e1724. https://doi.org/10.3791/1724.

  21. Berthelot, J., B. Le Goff, A. Neel, Y. Maugars, and M. Hamidou. 2017. NETosis: at the crossroads of rheumatoid arthritis, lupus, and vasculitis. Joint, Bone, Spine 84 (3): 255–262. https://doi.org/10.1016/j.jbspin.2016.05.013.

    Article  PubMed  Google Scholar 

  22. Barnado, A., L.J. Crofford, and J.C. Oates. 2016. At the bedside: neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. Journal of Leukocyte Biology 99 (2): 265–278. https://doi.org/10.1189/jlb.5BT0615-234R.

    Article  CAS  PubMed  Google Scholar 

  23. Bach, M., J. Moon, R. Moore, T. Pan, J.L. Nelson, and C. Lood. 2020. A neutrophil activation biomarker panel in prognosis and monitoring of patients with rheumatoid arthritis. Arthritis & Rheumatology 72 (1): 47–56. https://doi.org/10.1002/art.41062.

    Article  CAS  Google Scholar 

  24. Pérez-Sánchez, C., P. Ruiz-Limón, M.A. Aguirre, Y. Jiménez-Gómez, I. La Rosa, M.C. Ábalos-Aguilera, et al. 2017. Diagnostic potential of NETosis-derived products for disease activity, atherosclerosis and therapeutic effectiveness in Rheumatoid Arthritis patients. Journal of Autoimmunity 82: 31–40. https://doi.org/10.1016/j.jaut.2017.04.007.

  25. Wang, W., W. Peng, and X. Ning. 2018. Increased levels of neutrophil extracellular trap remnants in the serum of patients with rheumatoid arthritis. International Journal of Rheumatic Diseases 21 (2): 415–421. https://doi.org/10.1111/1756-185X.13226.

    Article  CAS  PubMed  Google Scholar 

  26. Fousert, E., R. Toes, and J. Desai. 2020. Neutrophil extracellular traps (NETs) take the central stage in driving autoimmune responses. Cells 9 (4): 915. https://doi.org/10.3390/cells9040915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, D., Y. Li, and R. Xu. 2023. Can pyroptosis be a new target in rheumatoid arthritis treatment? Frontiers in Immunology 14: 1155606. https://doi.org/10.3389/fimmu.2023.1155606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, L., Y. Zhao, D. Lai, P. Zhang, Y. Yang, Y. Li, et al. 2018. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death & Disease 9 (6): 597. https://doi.org/10.1038/s41419-018-0538-5.

    Article  CAS  Google Scholar 

  29. Li, H., Y. Li, C. Song, Y. Hu, M. Dai, B. Liu, et al. 2021. Neutrophil extracellular traps augmented alveolar macrophage pyroptosis via AIM2 inflammasome activation in LPS-induced ALI/ARDS. Journal of Inflammation Research 14: 4839–4858. https://doi.org/10.2147/JIR.S321513.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cui, Y., Y. Yang, W. Tao, W. Peng, D. Luo, N. Zhao, et al. 2023. Neutrophil extracellular traps induce alveolar macrophage pyroptosis by regulating NLRP3 deubiquitination, aggravating the development of septic lung injury. Journal of Inflammation Research 16: 861–877. https://doi.org/10.2147/JIR.S366436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng, F., L. Ma, X. Li, Z. Wang, R. Gao, C. Peng, et al. 2022. Neutrophil extracellular traps induce glomerular endothelial cell dysfunction and pyroptosis in diabetic kidney disease. Diabetes 71 (12): 2739–2750. https://doi.org/10.2337/db22-0153.

    Article  CAS  PubMed  Google Scholar 

  32. Nemeth, T., G. Nagy, and T. Pap. 2022. Synovial fibroblasts as potential drug targets in rheumatoid arthritis, where do we stand and where shall we go? Annals of the Rheumatic Diseases 81 (8): 1055–1064. https://doi.org/10.1136/annrheumdis-2021-222021.

    Article  CAS  PubMed  Google Scholar 

  33. Capece, D., D. Verzella, I. Flati, P. Arboretto, J. Cornice, and G. Franzoso. 2022. NF-κB: blending metabolism, immunity, and inflammation. Trends in Immunology 43 (9): 757–775. https://doi.org/10.1016/j.it.2022.07.004.

    Article  CAS  PubMed  Google Scholar 

  34. Tan, Y., R. Sun, L. Liu, D. Yang, Q. Xiang, L. Li, et al. 2021. Tumor suppressor DRD2 facilitates M1 macrophages and restricts NF-κB signaling to trigger pyroptosis in breast cancer. Theranostics 11 (11): 5214–5231. https://doi.org/10.7150/thno.58322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Z., X. Yao, W. Jiang, W. Li, S. Zhu, C. Liao, et al. 2020. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. Journal of Neuroinflammation 17 (1): 90. https://doi.org/10.1186/s12974-020-01751-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ge, G., J. Bai, Q. Wang, X. Liang, H. Tao, H. Chen, et al. 2022. Punicalagin ameliorates collagen induced arthritis by downregulating M1 macrophage and pyroptosis via NF-κB signaling pathway. Science China Life Sciences 65 (3): 588–603. https://doi.org/10.1007/s11427-020-1939-1.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Y., X. Cai, B. Wang, B. Zhang, and Y. Xu. 2023. Exploring the molecular mechanisms of the involvement of GZMB-caspase-3-GSDME pathway in the progression of rheumatoid arthritis. Molecular Immunology 161: 82–90. https://doi.org/10.1016/j.molimm.2023.07.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank all the patients and the staff members who generously collaborated with this research.

Funding

Grant support was provided by the National Natural Science Foundation of China (No. 81960302), Natural Science Foundation of Gansu Province (No. 22JR5RA975), and Gansu Clinical Medical Research Center (No. 21JR7RA437).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: JM and HLS; Collection and acquisition of surgical synovium samples and clinical data: MT, JL, CHL and JYH; Performed research: JM, MT; Acquisition of data: JM; Analysis and interpretation of data: JM, MT and JXZ. Drafting the manuscript: JM. All authors read and approved the final manuscript for publication.

Corresponding author

Correspondence to Haili Shen.

Ethics declarations

Ethics Approval and Consent to Participate

The studies involving human participants were reviewed and approved by Medical Ethics Committee of Lan Zhou University Second Hospital (protocol no: 2023A-533). The patients/participants provided their written informed consent to participate in this study.

Consent for Publication

The manuscript has been approved by all authors for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 638 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Tan, M., Li, J. et al. Neutrophil Extracellular Traps Induce Pyroptosis of Rheumatoid Arthritis Fibroblast-Like Synoviocytes via the NF-κB/Caspase 3/GSDME Pathway. Inflammation (2023). https://doi.org/10.1007/s10753-023-01951-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-023-01951-x

KEY WORDS

Navigation