Skip to main content
Log in

Deep learning-based design of additional patterns in self-referential holographic data storage

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Self-referential holographic data storage (SR-HDS), which has been proposed as a novel implementation method for holographic data storage (HDS), enables holographic recording without a reference beam. In addition to the signal pattern (SP) to be recorded, an additional pattern (AP) that affects the reconstruction quality is used in SR-HDS. One of the methods for obtaining a designed AP that contributes to high-quality reconstruction involves utilizing local search algorithms, such as the hill climbing (HC) method. However, designing an AP using this method typically requires a significant amount of time. In this study, we proposed a new AP-designing method that uses a deep neural network. By training a network with pairs of SP and designed AP based on a local search algorithm, a designed AP that improves the reconstruction quality of an arbitrary SP can be instantly obtained. APs designed using the deep learning-based method improved the reconstruction quality of SPs to the same level as those designed using the method based on local search algorithm, whereas the time required to obtain one designed AP was reduced by three or four orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Katano, Y., Nobukawa, T., Muroi, T., Kinoshita, N., Ishii, N.: CNN-based demodulation for a complex amplitude modulation code in holographic data storage. Opt. Rev. 28, 662–672 (2021)

    Article  Google Scholar 

  2. Kurokawa, S., Yoshida, S.: Demodulation scheme for constant-weight codes using convolutional neural network in holographic data storage. Opt. Rev. 29, 375–381 (2022)

    Article  Google Scholar 

  3. Zhao, Y., Wu, F., Lin, X., Zhang, M., Yu, Q., Tan, X., Xie, C.: Phase-distribution-aware adaptive decision scheme to improve the reliability of holographic data storage. Opt. Express 30, 16655–16668 (2022)

    Article  PubMed  ADS  Google Scholar 

  4. Bunsen, M., Umetsu, S., Takabayashi, M., Okamoto, A.: Method of phase and amplitude modulation/demodulation using datapages with embedded phase-shift for holographic data storage. Jpn. J. Appl. Phys. 52, 09LD04 (2013)

    Article  Google Scholar 

  5. Katano, Y., Muroi, T., Kinoshita, N., Ishii, N.: Highly efficient dual page reproduction in holographic data storage. Opt. Express 29, 33257–33268 (2021)

    Article  PubMed  ADS  Google Scholar 

  6. Hao, J., Lin, X., Lin, Y., Song, H., Chen, R., Chen, M., Wang, K., Tan, X.: Lensless phase retrieval based on deep learning used in holographic data storage. Opt. Lett. 46, 4168–4171 (2021)

    Article  PubMed  ADS  Google Scholar 

  7. Mok, F.: Angle-multiplexed storage of 5000 holograms in lithium niobate. Opt. Lett. 18, 915–917 (1993)

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Rakuljic, G.A., Layva, V., Yariv, A.: Optical data storage by using orthogonal wavelength-multiplexed volume holograms. Opt. Lett. 17(20), 1471–1473 (1992)

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Horimai, H., Tan, X.D., Li, J.: Collinear holography. Appl. Opt. 44, 2575–2579 (2005)

    Article  PubMed  ADS  Google Scholar 

  10. Jia, W., Chen, Z., Wen, F.J., Zhou, C., Chow, Y.T., Chung, P.S.: Coaxial holographic encoding based on pure phase modulation. Appl. Opt. 50, H10–H15 (2011)

    Article  PubMed  Google Scholar 

  11. Tanaka, K., Hara, M., Tokuyama, K., Hirooka, K., Ishioka, K., Fukumoto, A., Watanabe, K.: Improved performance in coaxial holographic data recording. Opt. Express 15, 16196–16209 (2007)

    Article  PubMed  ADS  Google Scholar 

  12. Qiu, X., Wang, K., Lin, X., Hao, J., Lin, D., Zheng, Q., Chen, R., Wang, S., Tan, X.: Combination compensation method to improve the tolerance of recording medium shrinkage in collinear holographic storage. Photonics 9(3), 149 (2022)

    Article  Google Scholar 

  13. Takabayashi, M., Okamoto, A.: Self-referential holography and its applications to data storage and phase-to-intensity conversion. Opt. Express 21(3), 3669–3681 (2013)

    Article  PubMed  ADS  Google Scholar 

  14. Takabayashi, M., Okamoto, A., Eto, T., Okamoto, T.: Shift-multiplexed self-referential holographic data storage. Appl. Opt. 53(20), 4375–4381 (2014)

    Article  PubMed  ADS  Google Scholar 

  15. Takabayashi, M., Okamoto, A., Eto, T., Okamoto, T.: Recording procedures for high-quality signal readout in self-referential holographic data storage. Appl. Opt. 54(16), 5167–5174 (2015)

    Article  PubMed  ADS  Google Scholar 

  16. Eto, T., Takabayashi, M., Okamoto, A., Bunsen, M., Okamoto, T.: Numerical simulations on inter-page crosstalk characteristics in three-dimensional shift multiplexed self-referential holographic data storage. Jpn. J. Appl. Phys. 55(8), 08RD01 (2016)

    Article  Google Scholar 

  17. Takabayashi, M., Eto, T., Okamoto, T.: Numerical simulations on the focus-shift multiplexing technique for self-referential holographic data storage. Opt. Rev. 23(6), 987–996 (2016)

    Article  CAS  Google Scholar 

  18. Tomioka, R., Takabayashi, M.: Numerical simulations on optoelectronic deep neural network hardware based on self‑referential holography. Opt. Rev. 30, 387–396 (2023)

    Article  Google Scholar 

  19. Saita, Y., Nomura, T.: Design method of input phase mask to improve light use efficiency and reconstructed image quality for holographic memory. Appl. Opt. 53, 4136–4140 (2014)

    Article  PubMed  ADS  Google Scholar 

  20. Chijiwa, K., Takabayashi, M.: Fast designing method of additional patterns in self-referential holographic data storage-approach using deep neural network-. ITE Tech. Rep. 47, 35–40 (2023). (in Japanese)

    Google Scholar 

  21. Ronneberger, O., Philipp, F., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015)

  22. Kang, S., Uchida, S., Iwana, B.K.: Tunable U-Net: controlling image-to-image outputs using a tunable scalar value. IEEE Access 9, 103279–103290 (2021)

    Article  Google Scholar 

  23. Laxman, K., Dubey, S.R., Kalyan, B., Kojjarapu, S.R.V.: Efficient high-resolution image-to-image translation using multi-scale gradient U-net. In: International Conference on Computer Vision and Image Processing. Springer International Publishing, Cham (2021)

  24. Ohyama, W., Suzuki, M., Uchida, S.: Detecting mathematical expressions in scientific document images using a u-net trained on a diverse dataset. IEEE Access 7, 144030–144042 (2019)

    Article  Google Scholar 

  25. Ibtehaz, N., Sohel Rahman, M.: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  PubMed  Google Scholar 

  26. Tanaka, J., Okamoto, A., Kitano, M.: Development of image-based simulation for holographic data storage system by fast Fourier transform beam propagation method. Jpn. J. Appl. Phys. 48, 03A028 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Takabayashi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chijiwa, K., Takabayashi, M. Deep learning-based design of additional patterns in self-referential holographic data storage. Opt Rev 31, 28–40 (2024). https://doi.org/10.1007/s10043-023-00856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00856-2

Keywords

Navigation