Skip to main content

Advertisement

Log in

Evolution of the magmatic-hydrothermal system at the Erdenetiin Ovoo porphyry Cu-Mo deposit, Mongolia: constraints on the relative timing of alteration and mineralization

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The evolution of the magmatic-hydrothermal system that formed the Triassic Erdenetiin Ovoo porphyry Cu-Mo deposit, northern Mongolia, is reconstructed through the study of the sequence of stockwork veining and the petrographic characteristics of the veins, as well as the cathodoluminescence and fluid inclusion characteristics of the vein quartz. Early A veins associated with potassic alteration formed at temperatures ≳ 500 °C under lithostatic pressures. The quartz in these veins shows a blue cathodoluminescence emission and is extensively recrystallized. Subhedral to euhedral quartz crystals contained in AB veins precipitated at the ductile to brittle transition at ~ 400–450 °C. The quartz crystals have cores showing a long-lived purple cathodoluminescence color with well-developed growth zoning, whereas the rims of the crystals lack growth banding and have a brownish-red cathodoluminescence emission. Fluid inclusions in the A and AB veins show elevated CO2 concentrations but show no evidence for immiscibility, implying that Erdenetiin Ovoo formed at ≳ 5 km below paleosurface. Quartz in the A and AB veins is crosscut by molybdenite ribbons. The presence of encapsulated molybdenite and sericite grains along growth zones in the quartz rims of the subhedral to euhedral quartz crystals constrains the timing of Mo introduction and suggests an association with the sericite alteration of the host rocks, which affected 50–60% of the deposit. Elevated Cu grades at Erdenetiin Ovoo are linked to the occurrence of C veins, which consist primarily of chalcopyrite and pyrite. These veins surrounded by halos of sericite-chlorite alteration lack quartz as a gangue mineral, suggesting formation at conditions of retrograde quartz solubility at ~ 400 °C and hydrostatic pressures. Late D veins formed at ≲ 375 °C and hydrostatic conditions. The veins consist primarily of pyrite and are associated with texturally destructive sericite alteration of the host rocks. The study demonstrates that hypogene Cu mineralization at Erdenetiin Ovoo was predated and post-dated by sericite alteration, which has important implications to alteration vectoring in porphyry exploration worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acosta MD, Watkins JM, Reed MH, Donovan JJ, DePaolo DJ (2020) Ti-in-quartz: evaluating the role of kinetics in high temperature crystal growth experiments. Geochim Cosmochim Acta 281:149–167

    Article  Google Scholar 

  • Agroli G, Okamoto A, Uno M, Tsuchiya N (2020) Transport and evolution of supercritical fluids during the formation of the Erdenet Cu-Mo deposit, Mongolia. Geosci 10:201

    Article  Google Scholar 

  • Arancibia ON, Clark AH (1996) Early magnetite-amphibole-plagioclase alteration-mineralization in the Island Copper porphyry copper-gold-molybdenum deposit, British Columbia. Econ Geol 91:402–438

    Article  Google Scholar 

  • Arif J, Baker T (2004) Gold paragenesis and chemistry at Batu Hijau, Indonesia: implications for gold-rich porphyry copper deposits. Miner Depos 39:523–535

    Article  Google Scholar 

  • Audétat A (2023) A plea for more skepticism toward fluid inclusions: Part II. Homogenization via halite dissolution in brine inclusions from magmatic-hydrothermal systems is commonly the result of postentrapment modifications. Econ Geol 118:43–55

    Article  Google Scholar 

  • Berzina AN, Sotnikov VI, Ponomarchuk VA, Berzina AP, Kiseleva VY (1999) Temporal periods of formation of Cu-Mo porphyry deposits, Siberia and Mongolia. In: Proceedings of the 5th Biennial Meeting of the Society for Geology Applied to Mineral Deposits, London, pp 321–324

  • Berzina AP, Sotnikov VI (2007) Character of formation of the Erdenet-Ovoo porphyry Cu-Mo magmatic center (northern Mongolia) in the zone of influence of a Permo-Triassic plume. Russ Geol Geophys 48:141–156

    Article  Google Scholar 

  • Braxton DP, Cooke DR, Ignacio AM, Waters PJ (2018) Geology of the Boyongan and Bayugo porphyry Cu-Au deposits: an emerging porphyry district in northeast Mindanao, Philippines. Econ Geol 113:83–131

    Article  Google Scholar 

  • Cannell J, Cooke DR, Walshe JL, Stein H (2005) Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit. Econ Geol 100:979–1003

    Article  Google Scholar 

  • Catchpole H, Kouzmanov K, Putlitz B, Seo JH, Fontboté L (2015) Zoned base metal mineralization in a porphyry system: origin and evolution of mineralizing fluids in the Morococha district, Peru. Econ Geol 110:39–71

    Article  Google Scholar 

  • Chang J, Li JW, Audétat A (2018) Formation and evolution of multistage magmatic-hydrothermal fluids at the Yulong porphyry Cu-Mo deposit, eastern Tibet: insights from LA-ICP-MS analysis of fluid inclusions. Geochim Cosmochim Acta 232:181–205

    Article  Google Scholar 

  • Chen X, Ye H, Wang H (2014) Genesis and evolution of the Leimengu porphyry Mo deposit in West Henan province, East Qinling-Dabie Belt, China: constraints from hydrothermal alteration, fluid inclusions and stable isotope data. J Asian Earth Sci 79:710–722

    Article  Google Scholar 

  • Clark AH (1993) Are outsize porphyry copper deposits either anatomically or environmentally distinctive? SEG Spec Pub 2:213–283

    Google Scholar 

  • Clode C, Proffett J, Mitchell P, Munajat I (1999) Relationships of intrusion, wall-rock alteration and mineralisation in the Batu Hijau copper-gold porphyry deposit. In: Proceedings of the International Congress on Earth Science, Exploration and Mining around the Pacific Rim, Bali, pp 485–498

  • Dejidmaa G, Naito K (1989) Previous studies on the Erdenetiin Ovoo porphyry copper-molybdenum deposit, Mongolia. Bull Geol Surv Japan 49:299–308

    Google Scholar 

  • Dilles JH, Einaudi MT (1992) Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada—a 6-km vertical reconstruction. Econ Geol 87:1963–2001

    Article  Google Scholar 

  • Fournier RO (1967) The porphyry copper deposit exposed in the Liberty open-pit mine near Ely, Nevada. Part I. Syngenetic formation. Econ Geol 62:57–81

    Article  Google Scholar 

  • Fournier RO (1991) The transition from hydrostatic to greater than hydrostatic fluid pressure in presently active continental hydrothermal systems in crystalline rock. Geophys Res Lett 18:955–958

    Article  Google Scholar 

  • Fournier RO (1999) Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ Geol 94:1193–1211

    Article  Google Scholar 

  • Fritzell EH, Bull AL, Shephard GE (2016) Closure of the Mongol-Okhotsk Ocean: insights from seismic tomography and numerical modelling. Earth Planet Sci Lett 445:1–12

    Article  Google Scholar 

  • Gavrilova SP, Maksimyuk IE, Orolmaa D (1984) Features of magmatism and composition of ore of the copper-molybdenum deposit at Erdenetiin Ovoo. Endogenic ore formations of Mongolia, Nauka, Moscow, pp 101–115 (in Russian)

    Google Scholar 

  • Gavrilova SP, Maksimyuk IE, Orolmaa D (1990) Stages of formation of the Erdenet molybdenum-copper porphyry deposit, Mongolia. Geol Rudn Mest 6:3–17 (in Russian)

    Google Scholar 

  • Gerel O, Pirajno F, Batkhishig B, Dostal J (2021) Mineral resources of Mongolia. In: Modern Approaches in Solid Earth Sciences, vol. 19. Springer, Singapore

  • Guo X, Lü X, Jia Q, Li J, Kong H (2019) Fluid inclusions and S-Pb isotopes of the Reshui porphyry Mo deposit in East Kunlun, Qinghai province, China. Minerals 9:547

    Article  Google Scholar 

  • Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857–912

    Article  Google Scholar 

  • Gustafson LB, Quiroga JG (1995) Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador, Chile. Econ Geol 90:2–16

    Article  Google Scholar 

  • Harris AC, Golding SD (2002) New evidence of magmatic-fluid–related phyllic alteration: implications for the genesis of porphyry Cu deposits. Geology 30:335–338

    Article  Google Scholar 

  • Hedenquist JW, Arribas A (2021) Exploration implications of multiple formation environments of advanced argillic minerals. Econ Geol 117:609–643

    Article  Google Scholar 

  • Hedenquist JW, Arribas A Jr, Reynolds TJ (1998) Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ Geol 93:373–404

    Article  Google Scholar 

  • Hedenquist JW, Matsuhisa Y, Izawa E, White NC, Giggenbach WF, Aoki M (1994) Geology, geochemistry, and origin of high sulfidation Cu-Au mineralization in the Nansatsu district, Japan. Econ Geol 89:1–30

    Article  Google Scholar 

  • Hedenquist JW, Taran YA (2013) Modeling the formation of advanced argillic lithocaps: volcanic vapor condensation above porphyry intrusions. Econ Geol 108:1523–1540

    Article  Google Scholar 

  • Heinrich CA (2007) Fluid-fluid interactions in magmatic-hydrothermal ore formation. Rev Mineral Geochem 65:363–387

    Article  Google Scholar 

  • Heinrich CA, Driesner T, Stefánsson A, Seward TM (2004) Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology 32:761–764

    Article  Google Scholar 

  • Holley EA, Monecke T, Bissig T, Reynolds TJ (2017) Evolution of high-level magmatic-hydrothermal systems: new insights from ore paragenesis of the Veladero high-sulfidation epithermal Au-Ag deposit, El Indio-Pascua belt, Argentina. Econ Geol 112:1747–1771

    Article  Google Scholar 

  • Jargalsaihan D, Kazmer M, Baras Z, Sanjaadorj D (1996) Guide to the geology and mineral resources of Mongolia. Geological Exploration Consulting and Services Ltd., Ulaanbaatar, pp 111–221

    Google Scholar 

  • Jiang SH, Nie FJ, Su YJ, Bai DM, Liu YF (2010) Geochronology and origin of the Erdenet superlarge Cu-Mo deposit in Mongolia. Acta Geosci Sin 31:289–306 (in Chinese)

    Google Scholar 

  • Kavalieris I, Kashgerel BE, Morgan LE, Undrakhtamir A, Borohul A (2017) Characteristics and 40Ar/39Ar geochronology of the Erdenet Cu-Mo deposit, Mongolia. Econ Geol 112:1033–1053

    Article  Google Scholar 

  • Klemm LM, Pettke T, Heinrich CA (2008) Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Miner Depos 43:533–552

    Article  Google Scholar 

  • Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wilde SA, Degtyarev KE, Rytsk E (2014) Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res 25:103–125

    Article  Google Scholar 

  • Lamb MA, Cox D (1998) New 40Ar/39Ar data and implications for porphyry copper deposits of Mongolia. Econ Geol 93:524–529

    Article  Google Scholar 

  • Landtwing MR, Furrer C, Redmond PB, Pettke T, Guillong M, Heinrich CA (2010) The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Econ Geol 105:91–118

    Article  Google Scholar 

  • Li XH, Klyukin YI, Steele-MacInnis M, Fan HR, Yang KF, Zoheir B (2020) Phase equilibria, thermodynamic properties, and solubility of quartz in saline-aqueous-carbonic fluids: application to orogenic and intrusion-related gold deposits. Geochim Cosmochim Acta 283:201–221

    Article  Google Scholar 

  • Liu J, Wu G, Li Y, Zhu M, Zhong W (2012) Re-Os sulfide (chalcopyrite, pyrite, and molybdenite) systematic and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang province, China. J Asian Earth Sci 49:300–312

    Article  Google Scholar 

  • Liu Y, Li W, Feng Z, Wen Q, Neubauer F, Liang C (2017) A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res 43:123–148

    Article  Google Scholar 

  • Logan L, von Quadt A, Driesner T, Peytcheva I (2019) Constraining the relation of the Erdenet porphyry Cu-Mo deposit to the Tsagaan Chuluut lithocap in northern Mongolia. In: Proceedings of the 15th Biennial Meeting of the Society for Geology Applied to Mineral Deposits, Glasgow, pp 1053–1056

  • Lowell JD, Guilbert JM (1970) Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ Geol 65:373–408

    Article  Google Scholar 

  • Lund K, McAleer RJ, Aleinikoff JN, Cosca MA, Kunk MJ (2018) Two-event lode-ore deposition at Butte, USA: 40Ar/39Ar and U-Pb documentation of Ag-Au-polymetallic lodes overprinted by younger stockwork Cu-Mo ores and penecontemporaneous Cu lodes. Ore Geol Rev 102:666–700

    Article  Google Scholar 

  • MacDonald AJ, Spooner ETC, Lee G (1995) The Boss Mountain molybdenum deposit, central British Columbia. CIM Spec Vol 46:691–696

    Google Scholar 

  • Manske SL, Paul AH (2002) Geology of a major new porphyry copper center in the Superior (Pioneer) district, Arizona. Econ Geol 97:197–220

    Article  Google Scholar 

  • Mao W, Rusk B, Yang F, Zhang M (2017) Physical and chemical evolution of the Dabaoshan porphyry Mo deposit, South China: insights from fluid inclusions, cathodoluminescence, and trace elements in quartz. Econ Geol 112:889–918

    Article  Google Scholar 

  • Masterman GJ, Cooke DR, Berry RF, Walshe JL, Lee AW, Clark AH (2005) Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile. Econ Geol 100:835–862

    Article  Google Scholar 

  • Maydagán L, Franchini M, Rusk B, Lentz DR, McFarlane C, Impiccini A, Ríos FJ, Rey R (2015) Porphyry to epithermal transition in the Altar Cu-(Au-Mo) deposit, Argentina, studied by cathodoluminescence, LA-ICP-MS, and fluid inclusion analysis. Econ Geol 110:889–923

    Article  Google Scholar 

  • Monecke T, Monecke J, Reynolds TJ (2019) The influence of CO2 on the solubility of quartz in single-phase hydrothermal fluids: implications for the formation of stockwork veins in porphyry copper deposits. Econ Geol 114:1195–1206

    Article  Google Scholar 

  • Monecke T, Monecke J, Reynolds TJ, Tsuruoka S, Bennett MM, Skewes WB, Palin RM (2018) Quartz solubility in the H2O-NaCl system: a framework for understanding vein formation in porphyry copper deposits. Econ Geol 113:1007–1046

    Article  Google Scholar 

  • Morozumi H (2003) Geochemical characteristics of granitoids of the Erdenet porphyry copper deposit, Mongolia. Resour Geol 53:311–316

    Article  Google Scholar 

  • Müller A, Herrington R, Armstrong R, Seltmann R, Kirwin DJ, Stenina NG, Kronz A (2010) Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Miner Depos 45:707–727

    Article  Google Scholar 

  • Munkhtsengel B (2007) Magmatic and mineralization processes of the Erdenetiin Ovoo porphyry copper-molybdenum deposit and environmental assessment, northern Mongolia. PhD thesis, Tohoku University, Japan

    Google Scholar 

  • Muntean JL, Einaudi MT (2000) Porphyry gold deposits of the Refugio district, Maricunga belt, northern Chile. Econ Geol 95:1445–1472

    Article  Google Scholar 

  • Murakami H, Seo JH, Heinrich CA (2010) The relation between Cu/Au ratio and formation depth of porphyry-style Cu-Au±Mo deposits. Miner Depos 45:11–21

    Article  Google Scholar 

  • Neuser RD (1995) A new high-intensity cathodoluminescence microscope and its application to weakly luminescing minerals. Bochum Geol Geotechn Arb 44:116–118

    Google Scholar 

  • Nielsen RL (1968) Hypogene texture and mineral zoning in a copper-bearing granodiorite porphyry stock, Santa Rita, New Mexico. Econ Geol 63:37–50

    Article  Google Scholar 

  • Ossandón GC, Fréraut RC, Gustafson LB, Lindsay DD, Zentille M (2001) Geology of the Chuquicamata mine: a progress report. Econ Geol 96:249–270

    Article  Google Scholar 

  • Perelló JA, Fleming JA, O’Kane KP, Burt PD, Clarke GA, Himes MD, Reeves AT, Schroeter TG (1995) Porphyry copper-gold-molybdenum deposits in the Island Copper cluster, northern Vancouver Island, British Columbia. CIM Spec Vol 46:214–238

    Google Scholar 

  • Pollard PJ, Taylor RG (2002) Paragenesis of the Grasberg Cu-Au deposit, Irian Jaya, Indonesia: results from logging section 13. Miner Depos 37:117–136

    Article  Google Scholar 

  • Proffett JM (2009) High Cu grades in porphyry Cu deposits and their relationship to emplacement depth of magmatic sources. Geology 37:675–678

    Article  Google Scholar 

  • Pudack C, Halter WE, Heinrich CA, Pettke T (2009) Evolution of magmatic vapor to gold-rich epithermal liquid: the porphyry to epithermal transition at Nevados de Famatina, northwest Argentina. Econ Geol 104:449–477

    Article  Google Scholar 

  • Redmond PB, Einaudi MT, Inan EE, Landtwing MR, Heinrich CA (2004) Copper deposition by fluid cooling in intrusion-centered systems: new insights from the Bingham porphyry ore deposit, Utah. Geology 32:217–220

    Article  Google Scholar 

  • Rees C, Riedell KB, Proffett JM, Macpherson J, Robertson S (2015) The Red Chris porphyry copper-gold deposit, northern British Columbia, Canada: igneous phases, alteration, and controls of mineralization. Econ Geol 110:857–888

    Article  Google Scholar 

  • Reynolds TJ, Beane RE (1985) Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit. Econ Geol 80:1328–1347

    Article  Google Scholar 

  • Rinne ML, Cooke DR, Harris AC, Finn DJ, Allen CM, Heizler MT, Creaser RA (2018) Geology and geochronology of the Golpu porphyry and Wafi epithermal deposit, Morobe province, Papua New Guinea. Econ Geol 113:271–294

    Article  Google Scholar 

  • Rosso KM, Bodnar RJ (1995) Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO2. Geochim Cosmochim Acta 59:3961–3975

    Article  Google Scholar 

  • Rusk BG, Hammerli J, Kendrick MA, Emsbo P, Hofstra A, Hunt A, Landis G, Rye R (2011) Source and composition of porphyry Cu (Mo-Au) ore fluids. In: Proceedings of the 11th Biennial Meeting of the Society for Geology Applied to Mineral Deposits, Antofagasta, Chile, pp 414–416

  • Rusk BG, Reed MH, Dilles JH (2008) Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Econ Geol 103:307–334

    Article  Google Scholar 

  • Rye RO, Bethke PM, Wasserman MD (1992) The stable isotope geochemistry of acid sulfate alteration. Econ Geol 87:225–262

    Article  Google Scholar 

  • Safonova I, Seltmann R, Kröner A, Gladkochub D, Schulmann K, Xiao W, Kim J, Komiya T, Sun M (2011) A new concept of continental construction in the Central Asian Orogenic Belt. Episodes 34:186–196

    Article  Google Scholar 

  • Sapiie B, Cloos M (2013) Strike–slip faulting and veining in the Grasberg giant porphyry Cu–Au deposit, Ertsberg (Gunung Bijih) mining district, Papua, Indonesia. Int Geol Rev 55:1–42

    Article  Google Scholar 

  • Schirra M, Laurent O, Zwyer T, Driesner T, Heinrich CA (2022) Fluid evolution at the Batu Hijau porphyry Cu-Au deposit, Indonesia: hypogene sulfide precipitation from a single-phase aqueous magmatic fluid during chlorite-white-mica alteration. Econ Geol 117:979–1012

    Article  Google Scholar 

  • Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Barton MD (2005) Porphyry deposits: characteristics and origin of hypogene features. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology 100th anniversary volume. Society of Economic Geologists, Littleton, pp 251–298

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Skarmeta J (2021) Structural controls on alteration stages at the Chuquicamata copper-molybdenum deposit, northern Chile. Econ Geol 116:1–28

    Article  Google Scholar 

  • Sotnikov VI, Panomorchuk VA, Berzina AP, Travin AV (1995) Geochronological boundaries of magmatism in the Cu-Mo porphyry deposit at Erdenetiin Ovoo, Mongolia. Geol Geofiz 36:78–89 (in Russian)

    Google Scholar 

  • Stefanova E, Driesner T, Zajacz Z, Heinrich CA, Petrov P, Vasilev Z (2014) Melt and fluid inclusions in hydrothermal veins: the magmatic to hydrothermal evolution of the Elatsite porphyry Cu-Au deposit, Bulgaria. Econ Geol 109:1359–1381

    Article  Google Scholar 

  • Sterner SM, Bodnar RJ (1989) Synthetic fluid inclusions—VII. Re-equilibration of fluid inclusions in quartz during laboratory-simulated metamorphic burial and uplift. J Metamorph Geol 7:243–260

    Article  Google Scholar 

  • Stoffregen R (1987) Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado. Econ Geol 82:1575–1591

    Article  Google Scholar 

  • Sun M, Monecke T, Reynolds TJ, Yang Z (2021) Understanding the evolution of magmatic-hydrothermal systems based on microtextural relationships, fluid inclusion petrography, and quartz solubility constraints: insights into the formation of the Yulong Cu-Mo porphyry deposit, eastern Tibetan Plateau, China. Miner Depos 56:823–842

    Article  Google Scholar 

  • Taylor RD, Hammarstrom JM, Piatak NM, Seal RR II (2012) Arc-related porphyry molybdenum deposit model. U.S. Geol Surv Sci Inv Rep 2010–5070–D, p 64

    Google Scholar 

  • Tomlinson DH Jr, Christiansen EH, Keith JD, Dorais MJ, Ganske R, Fernandez D, Vetz N, Sorensen M, Gibbs J (2021) Nature and origin of zoned polymetallic (Pb-Zn-Cu-Ag-Au) veins from the Bingham Canyon porphyry Cu-Au-Mo deposit, Utah. Econ Geol 116:747–771

    Article  Google Scholar 

  • Tsuruoka S, Monecke T, Reynolds TJ (2021) Evolution of the magmatic-hydrothermal system at the Santa Rita porphyry Cu deposit, New Mexico, USA: importance of intermediate-density fluids in ore formation. Econ Geol 116:1267–1284

    Article  Google Scholar 

  • Ulrich T, Günther D, Heinrich CA (2002) The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Econ Geol 97:1889–1920

    Article  Google Scholar 

  • Van der Voo R, van Hinsbergen DJJ, Domeier M, Spakman W, Torsvik TH (2015) Latest Jurassic-earliest Cretaceous closure of the Mongol-Okhotsk Ocean: a paleomagnetic and seismological-tomographic analysis. Geol Soc Am Spec Pap 513:589–606

    Google Scholar 

  • Voudouris PC, Melfos V, Spry PG, Kartal T, Schleicher H, Moritz R, Ortelli M (2013) The Pagoni Rachi/Kirki Cu-Mo ± Re ± Au deposit, northern Greece: mineralogical and fluid inclusion constraints on the evolution of a telescoped porphyry-epithermal system. Can Mineral 51:253–284

    Article  Google Scholar 

  • Wang P, Chen YJ, Fu B, Yang YF, Mi M, Li ZL (2014) Fluid inclusions and H-O-C isotope geochemistry of the Yaochong porphyry Mo deposit in Dabie Shan, China: a case study of porphyry systems in continental collision orogens. Int J Earth Sci 103:777–797

    Article  Google Scholar 

  • Watanabe Y, Stein HJ (2000) Re-Os ages for the Erdenet and Tsagaan Suvarga porphyry Cu-Mo deposits, Mongolia, and tectonic implications. Econ Geol 95:1537–1542

    Google Scholar 

  • Weis P, Driesner T, Heinrich CA (2012) Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science 338:1613–1616

    Article  Google Scholar 

  • Windley BF, Alexeiev D, Xiao W, Kröner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc 164:31–47

    Article  Google Scholar 

  • Xiao W, Santosh M (2014) The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Res 25:1429–1444

    Article  Google Scholar 

  • Yang YF, Chen YJ, Li N, Mi M, Xu YL, Li FL, Wan SQ (2013) Fluid inclusion and isotope geochemistry of the Qian’echong giant porphyry Mo deposit, Dabie Shan, China: a case of NaCl-poor, CO2-rich fluid systems. J Geochem Explor 124:1–13

    Article  Google Scholar 

  • Yi Z, Meert JG (2020) A closure of the Mongol-Okhotsk Ocean by the Middle Jurassic: reconciliation of paleomagnetic and geological evidence. Geophys Res Lett 47:e2020GL088235

    Article  Google Scholar 

  • Zaheri-Abdehvand N, Tarantola A, Rasa I, Hassanpour S, Peiffert C (2020) Metal content and P-T evolution of CO2-bearing ore-forming fluids of the Haftcheshmeh Cu-Mo porphyry deposit, NW Iran. J Asian Earth Sci 190:104166

    Article  Google Scholar 

  • Zhao XY, Zhong H, Hu RZ, Mao W, Bai ZJ, Lan TG, Xue K (2021) Evolution of multistage hydrothermal fluids in the Luoboling porphyry Cu-Mo deposit, Zijinshan ore field, Fujian province, China: insights from LA-ICP-MS analyses of fluid inclusions. Econ Geol 116:581–606

    Article  Google Scholar 

Download references

Acknowledgements

The staff of Erdenet Mining is acknowledged for their assistance during field work at the mine site. We acknowledge Undrakhtamir Aleksandr and Tsedendamba Oyunbuyan for initiating this research and discussions on the geology of the deposit. Damdinsuren Muunuu, Amarzaya Khorolgara, and Chuluun Tsedev are thanked for handling the challenging logistics associated with mine visits during the COVID-19 pandemic. We are grateful to Tugsbuyan Tsedenbaljir for providing additional logistic support. Field work was assisted by Batgerel Battushig, Munkhshur Munkhzaya, Tudev Davaadorj, Khatansaikhan Ochirpurev, Bazarsad Ganbayar, and Tselmeg Tumen-Ulzii. This research would not have been possible without Seequent providing support of the IMAGO and Leapfrog Geo3D platforms used during the field research at Erdenetiin Ovoo. We thank Jingjing Zhu and Lawrence Carter for reviewing the manuscript and Karen Kelley for editorial handling.

Funding

This work was financially supported by Erdenet Mining Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Monecke.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: K. Kelley

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monecke, T., Reynolds, T.J., Gonchig, T. et al. Evolution of the magmatic-hydrothermal system at the Erdenetiin Ovoo porphyry Cu-Mo deposit, Mongolia: constraints on the relative timing of alteration and mineralization. Miner Deposita (2023). https://doi.org/10.1007/s00126-023-01221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00126-023-01221-8

Keywords

Navigation