Skip to main content
Log in

High-throughput phenotyping of individual plant height in an oilseed rape population based on Mask-RCNN and UAV images

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Plant height, a key agronomic trait, affects crop structure, photosynthesis, and thus the final yield and seed quality. The combination of digital cameras on unmanned aerial vehicles (UAVs) and use of structure from motion have enabled high-throughput crop canopy height estimation. However, the focus of prior research has mainly been on plot-level height prediction, neglecting precise estimations for individual plants. This study aims to explore the potential of UAV RGB images with mask region-based convolutional neural network (Mask-RCNN) for high-throughput phenotyping of individual-level height (IH) in oilseed rape at different growth stages. Field-measured height (FH) of nine sampling plants in each subplot of the 150 subplots was obtained by manual measurement after the UAV flight. An instance segmentation model for oilseed rape with data augmentation based on the Mask-RCNN model was developed. The IHs were then used to obtain plot-level height based on individual-level height (PHIH). The results show that Mask-RCNN performed better than the conventional Otsu method with the F1 score increased by 60.8% and 26.6% under high and low weed pressure, respectively. The trained model with data augmentation achieved accurate crop height estimation based on overexposed and underexposed UAV images, indicating the model’s applicability in practical scenarios. The PHIH can be predicted with the determination coefficient (r2) of 0.992, root mean square error (RMSE) of 4.03 cm, relative root mean square error (rRMSE) of 7.68%, which outperformed the results in the reported studies, especially in the late bolting stage. The IHs of the whole growth stages of oilseed can be predicted by this method with an r2 of 0.983, RMSE of 2.60 cm, and rRMSE of 7.14%. Furthermore, this method enabled a comprehensive Genome-wide association study (GWAS) in a 293-accession genetic population. The GWAS identified 200 and 65 statistically significant single nucleotide polymorphisms (SNPs), which were tightly associated with 28 and 11 candidate genes, at the late bolting and flowering stages, respectively. These findings demonstrated that the proposed method is promising for accurate estimations of IHs in oilseed rape as well as exploring the variations within the subplot, thus providing great potential for high-throughput plant phenotyping in crop breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Acknowledgements

This work was funded by the National Key R & D Program of China (Grant No. 2021YFD2000104) and the Key R & D Program of Zhejiang Province, China (Grant No. 2021C02057). We would like to thank Xin Yang, Letong Li, Leisen Fang, Yichi Zhang, Mengya Zhao, Li Zhai, and Shuobo Chen for helping with data collection and thank Prof. Weijun Zhou for providing the field experimental materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Cen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 436.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Lu, X., Lyu, M. et al. High-throughput phenotyping of individual plant height in an oilseed rape population based on Mask-RCNN and UAV images. Precision Agric 25, 811–833 (2024). https://doi.org/10.1007/s11119-023-10095-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-10095-9

Keywords

Navigation