Skip to main content
Log in

Dynamics of Virulence of Commensals: Preventive Phenotypical Mutability

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The peculiarities of the influence of cytokines and metabolites of the systemic inflammatory reaction and stress-implementing and nutritional factors contributing to the transformation of the phenotype of the resident intestinal microflora with an increase in its virulence are described. From the perspective of expression of genes and conformations of proteins and phospholipids, the influence of temperature as a signaling factor in increasing the virulence of the intestinal microbiome is considered. Evolutionarily formed mechanisms of expression of the maximum pathogenic phenotype of microorganisms and, thus, achieving an increase in their biomass and maximum dissemination through the microorganism compartments increase the probability of the transmission of commensals to another biotope, i.e., increases the probability of their survival after the death of the host organism. To prevent bacterial translocation after the relief of critical conditions, early enteral administration of β-glucans in food mixtures, iron excretion, and relief of inorganic phosphate deficiency, including by induction of alkaline phosphatase synthesis, are substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Aberg, K.M., Radek, K.A., Choi, E.H., et al., Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice, J. Clin. Invest., 2007, vol. 117, no. 11, pp. 3339–3349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abolbaghaei, A., Silke, J.R., and Xia, X., How changes in anti-SD sequences would affect SD sequences in Escherichia coli and Bacillus subtilis, G3, 2017, vol. 7, no. 5, pp. 1607–1615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Achour, L., Nancey, S., Moussata, D., et al., Faecal bacterial mass and energetic losses in healthy humans and patients with a short bowel syndrome, Eur. J. Clin. Nutr., 2007, vol. 61, no. 2, pp. 233–238.

    Article  CAS  PubMed  Google Scholar 

  4. Agans, R., Gordon, A., Kramer, D.L., et al., Dietary fatty acids sustain the growth of the human gut microbiota, Appl. Environ. Microbiol., 2018, vol. 84, no. 21, p. e01525–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahern, P.P. and Maloy, K.J., Understanding immune-microbiota interactions in the intestine, Immunology, 2020, vol. 159, no. 1, pp. 4–14.

    Article  CAS  PubMed  Google Scholar 

  6. Ahlman, H., Bhargava, H.N., Dahlstrom, A., et al., On the presence of serotonin in the gut lumen and possible release mechanisms, Acta Physiol. Scand., 1981, vol. 112, no. 3, pp. 263–269.

    Article  CAS  PubMed  Google Scholar 

  7. Almeida, A., Mitchell, A.L., Boland, M., et al., A new genomic blueprint of the human gut microbiota, Nature, 2019, vol. 568, no. 7753, pp. 499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Altshuler, A.E., Kistler, E.B., and Schmid-Schönbein, G.W., Autodigestion: Proteolytic degradation and multiple organ failure in shock, Shock, 2016, vol. 45, no. 5, pp. 483–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alverdy, J., HolBrook, C., Rocha, F., et al., Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: Evidence for in vivo virulence expression in Pseudomonas aeruginosa, Ann. Surg., 2000, vol. 232, no. 4, pp. 480–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alverdy, J.C. and Krezalek, M.A., Collapse of the microbiome, emergence of the pathobiome, and the immunopathology of sepsis, Crit. Care Med., 2017, vol. 45, no. 2, pp. 337–347.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ambrosini, Y.M., Borcherding, D., Kanthasamy, A., et al., The gut-brain axis in neurodegenerative diseases and relevance of the canine model: A review, Front. Aging Neurosci., 2019, vol. 11, p. 130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Amedei, A. and Morbidelli, L., Circulating metabolites originating from gut microbiota control endothelial cell function, Molecules, 2019, vol. 24, no. 2, p. 3992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anderson, G.J. and Frazer, D.M., Current understanding of iron homeostasis, Am. J. Clin. Nutr., 2017, vol. 106, no. Suppl. 6, pp. 1559S–1566S.

  14. Andrusishina, I.N., Vazhnichaya, E.M., Donchenko, E.A., et al., Treatment for iron overload or hemachromatosis, RF Patent 2557959C1, Bull. Izobret., 2015, no. 21.

  15. Annane, D., Adrenal insufficiency in sepsis, Curr. Pharm. Des., 2008, vol. 14, no. 19, pp. 1882–1886.

    Article  CAS  PubMed  Google Scholar 

  16. Annane, D., The role of ACTH and corticosteroids for sepsis and septic shock: An update, Front. Endocrinol., 2016, vol. 7, p. 70.

    Article  Google Scholar 

  17. Annane, D., Maxime, V., Ibrahim, F., et al., Diagnosis of adrenal insufficiency in severe sepsis and septic shock, Am. J. Respir. Crit. Care Med., 2006, vol. 174, no. 12, pp. 1319–1326.

    Article  PubMed  Google Scholar 

  18. Anokhin, P.K., Anticipatory reflection of reality, Voprosy Filosofii, 1962, no. 7, pp. 97–111.

  19. Anokhin, P.K., Teoriya otrazheniya i sovremennaya nauka o mozge (Reflection Theory and Modern Brain Science), Moscow: Znanie, 1970.

  20. Arena, M.P., Caggianiello, G., Fiocco, D., et al., Barley β-glucans-containing food enhances probiotic performances of beneficial bacteria, Int. J. Mol. Sci., 2014, vol. 15, no. 2, pp. 3025–3039.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Armando, I., Lemoine, A.P., Segura, E.T., and Barontini, M.B., The stress-induced reduction in monoamine oxidase (MAO) A activity is reversed by benzodiazepines: Role of peripheral benzodiazepine receptors, Cell. Mol. Neurobiol., 1993, vol. 13, no. 6, pp. 593–600.

    Article  CAS  PubMed  Google Scholar 

  22. Arumugam, M., Raes, J., Pelletier, E., et al., Enterotypes of the human gut microbiome, Nature, 2011, vol. 473, no. 7346, pp. 174–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ataka, K., Kuge, T., Fujino, K., et al., Wood creosote prevents CRF-induced motility via 5-HT3 receptors in proximal and 5-ht4 receptors in distal colon in rats, Auton. Neurosci., 2007, vol. 133, no. 2, pp. 136–145.

    Article  CAS  PubMed  Google Scholar 

  24. Atwal, N., Winters, L., and Vaughan, C.W., Endogenous cannabinoid modulation of restrain stress-induced analgesia in thermal nociception, J. Neurochem., 2020, vol. 152, no. 1, pp. 92–102.

    Article  CAS  PubMed  Google Scholar 

  25. Babrowski, T., Holbrook, C., Moss, J., et al., Pseudomonas aeruginosa virulence expression is directly activated by morphine and is capable of causing lethal gut-derived sepsis in mice during chronic morphine administration, Ann. Surg., 2012, vol. 255, no. 2, pp. 386–393.

    Article  PubMed  Google Scholar 

  26. Backhed, F., Ley, R.E., Sonnenburg, J.L., et al., Host-bacterial mutualism in the human intestine, Science, 2005, vol. 307, no. 5717, pp. 1915–1920.

    Article  PubMed  Google Scholar 

  27. Bajwa, S.J. and Gupta, S., Controversies, principles and essentials of enteral and parenteral nutrition in critically ill-patients, J. Med. Nutr. Nutraceut., 2013, vol. 2, no. 2, pp. 77–83.

    Article  Google Scholar 

  28. Bakulina, L.S., Litvinenko, I.V., Nakatis, A.Ya., et al., The concept of the pathogenesis of sepsis and therapeutic strategy for the prevention/treatment of septic conditions, in Sepsis: pozhar i bunt na tonushchem v shtorm korable (Sepsis: Fire and Riot on a Ship Sinking in a Storm), Pluzhnikov, N.N., Chepur, S.V., and Khurtsilava, O.G., Eds., St. Petersb.: I.I. Mechnikov Severo-Zapadnyi Gos. Med. Univ., 2017.

  29. Banerjee, S., Sindberg, G., Wang, F., et al., Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation, Mucosal Immunol., 2016, vol. 9, no. 6, pp. 1418–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Banks, W.A. and Robinson, S.M., Minimal penetration of lipopolysaccharide across the murine blood-brain barrier, Brain, Behav., Immun., 2009, vol. 24, no. 1, pp. 102–109.

    Article  PubMed  Google Scholar 

  31. Baquero, F. and Nombela, C., The microbiome as a human organ, Clin. Microbiol. Infect., 2012, vol. 18, suppl. 4, pp. 2–4.

  32. Bäumler, A.J. and Sperandio, V., Interactions between the microbiota and pathogenic bacteria in the gut, Nature, 2016, vol. 545, no. 7610, pp. 85–93.

    Article  Google Scholar 

  33. Bearson, B.L., Molecular profiling: Catecholamine modulation of gene expression in Escherichia coli O157:H7 and Salmonella enterica serovar typhimurium, Adv. Exp. Med. Biol., 2016, vol. 874, pp. 167–182.

    Article  CAS  PubMed  Google Scholar 

  34. Beecher, H.K., Generalization from pain of various types and diverse origin, Science, 1959, vol. 130, no. 3370, pp. 267–268.

    Article  CAS  PubMed  Google Scholar 

  35. Belay, T. and Sonnenfeld, G., Differential effects of catecholamines on in vitro growth of pathogenic bacteria, Life Sci., 2002, vol. 71, no. 4, pp. 447–456.

    Article  CAS  PubMed  Google Scholar 

  36. Bellali, S., Lagier, J.C., Raoult, D., and Bou Khalil J., Among live and dead bacteria, the optimization of sample collection and processing remains essential in recovering gut microbiota components, Front. Microbiol., 2019, vol. 10, p. 1606.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berdy, B., Spoering, A.L., Ling, L.I., and Epstein, S.S., In situ cultivation of previously uncultivable microorganisms using the ichip, Nat. Protoc., 2017, vol. 12, no. 10, pp. 2232–2242.

    Article  PubMed  Google Scholar 

  38. Bergers, G. and Song, S., The role of pericytes in blood-vessel formation and maintenance, Neuro-Oncology, 2005, vol. 7, no. 4, pp. 452–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Biagi, E., Candela, M., Turroni, S., et al., Ageing and gut microbes: Perspectives for health maintenance and longevity, Pharmacol. Res., 2013, vol. 69, no. 1, pp. 11–20.

    Article  PubMed  Google Scholar 

  40. Biagi, E., Zama, D., Nastasi, C., et al., Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT, Bone Marr. Transplant., 2015, vol. 50, no. 7, pp. 992–998.

    Article  CAS  Google Scholar 

  41. Bilski, J., Mazur-Bialy, A., Wojcik, D., et al., The role of intestinal alkaline phosphatase in inflammatory disorders of gastrointestinal tract, Mediat. Inflamm., 2017, vol. 2017, p. 9074601.

    Article  Google Scholar 

  42. Binder, E.B. and Nemeroff, C.B., The CRF system, stress, depression and anxiety—insights from human genetic studies, Mol. Psych., 2010, vol. 15, no. 6, pp. 574–588.

    Article  CAS  Google Scholar 

  43. Binder, S.C., Eckweiler, D., Schulz, S., et al., Functional modules of sigma factor regulons guarantee adaptability and evolvability, Sci. Rep., 2016, vol. 6, p. 22212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bischoff, M., Entenza, J.M., and Giachino, P., Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus, J. Bacteriol., 2001, vol. 183, no. 17, pp. 5171–5179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bland, J., The gut mucosal firewall and functional medicine, Integr. Med., 2016, vol. 15, no. 4, pp. 19–22.

    Google Scholar 

  46. Bodor, A., Bounedjoum, N., Vincze, G.E., et al., Challenges of unculturable bacteria: environmental perspectives, Rev. Environ. Sci. Biotechnol., 2020, vol. 19, no. 1, pp. 1–22.

    Article  CAS  Google Scholar 

  47. Boleij, A. and Tjalsma, H., Gut bacteria in health and disease: A survey on the interface between intestinal microbiology and colorectal cancer, Biol. Rev. Cambridge Philos. Soc., 2012, vol. 87, no. 3, pp. 701–730.

    Article  PubMed  Google Scholar 

  48. Brown, E.M., Sadarangani, M., and Finlay, B.B., The role of the immune system in governing host-microbe interactions in the intestine, Nat. Immunol., 2013, vol. 14, no. 7, pp. 660–667.

    Article  CAS  PubMed  Google Scholar 

  49. Browne, H.P., Forster, S.C., Anonye, B.O., et al., Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation, Nature, 2016, vol. 533, no. 7604, pp. 543–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Busnelli, M., Mqanzini, S., and Chiesa, G., The gut microbiota affects host pathophysiology as an endocrine organ: A focus on cardiovascular disease, Nutrients, 2019, vol. 12, no. 1, p. 79.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Butler, R.K. and Finn, D.P., Stress-induced analgesia, Prog. Neurobiol., 2009, vol. 88, no. 3, pp. 184–202.

    Article  CAS  PubMed  Google Scholar 

  52. Cambronel, M., Nilly, F., Mesguida, O., et al., Influence of catecholamines (epinephrine/norepinephrine) on biofilm formation and adhesion in pathogenic and probiotic strains of Enterococcus faecalis, Front. Microbiol., 2020, vol. 11, p. 1501.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cao, J., Papadopoulou, N., Kempuraj, D., et al., Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor, J. Immunol., 2005, vol. 174, no. 12, pp. 7665–7675.

    Article  CAS  PubMed  Google Scholar 

  54. Caputo, F.J., Rupani, B., Watkins, A.C., et al., Pancreatic duct ligation abrogates the trauma hemorrhage-induced gut barrier failure and the subsequent production of biologically active intestinal lymph, Shock, 2007, vol. 28, no. 4, pp. 441–446.

    Article  PubMed  Google Scholar 

  55. Cartwright, K.A., Jones, D.M., Smith, A.J., et al., Influenza A and meningococcal disease, Lancet, 1991, vol. 338, no. 8766, pp. 554–557.

    Article  CAS  PubMed  Google Scholar 

  56. Castagliuolo, I., Lamont, J.T., Qiu, B., et al., Acute stress causes mucin release from rat colon: Role of corticotropin releasing factor and mast cells, Am. J. Physiol., 1996, vol. 271, no. 5, pp. G884–G892.

    CAS  PubMed  Google Scholar 

  57. Cerqueira, F.M., Photenhauer, A.L., Pollet, R.M., et al., Starch digestion by gut bacteria: Crowdsourcing for carbs, Trends Microbiol., 2020, vol. 28, no. 2, pp. 95–108.

    Article  CAS  PubMed  Google Scholar 

  58. Chan, P.F. and Foster, S.J., Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus, J. Bacteriol., 1998, vol. 180, no. 23, pp. 6232–6241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chan, K.G., Priya, K., Chang, C.Y., et al., Transcriptome analysis of Pseudomonas aeruginosa PAO1 grown at both body and elevated temperatures, Peer J., 2016, vol. 4, p. e2223.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chang, M., Alsaigh, T., Kistler, E.B., and Schmid-Schönbein, G.W., Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine, PLoS One, 2012a, vol. 7, no. 6, p. e40087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chang, M., Kistler, E.B., and Schmid-Schönbein, G.W., Disruption of the mucosal barrier during gut ischemia allows entry of digestive enzymes into intestinal wall, Shock, 2012b, vol. 37, no. 3, pp. 297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chaniotou, Z., Giannogonas, P., Theoharis, S., et al., Corticotropin-releasing factor regulates TLR4 expression in the colon and protects mice from colitis, Gastroenterology, 2010, vol. 139, no. 6, pp. 2083–2092.

    Article  CAS  PubMed  Google Scholar 

  63. Chastanet, A., Fert, J., and Msadek, T., Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other gram-positive bacteria, Mol. Microbiol., 2003, vol. 47, no. 4, pp. 1061–1073.

    Article  CAS  PubMed  Google Scholar 

  64. Chastanet, A., Derre, I., Nair, S., and Msadek, T., ClpB, a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance, J. Bacteriol., 2004, vol. 186, no. 4, pp. 1165–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chatoo, M., Li, Y., Ma, Z., et al., Involvement of corticotropin-releasing factor and receptors in immune cells in irritable bowel syndrome, Front. Endocrinol., 2018, vol. 9, p. 21.

    Article  Google Scholar 

  66. Chekabab, S.M., Harel, J., and Dozois, C.M., Interplay between genetic regulation of phosphate homeostasis and bacterial virulence, Virulence, 2014, vol. 5, no. 8, pp. 786–793.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cheng, S.Y., Serova, L.I., and Sabban, E.L., Immobilization stress elevates intron-containing transcripts for tyrosine hydroxylase in rat superior cervical ganglia indicating transcriptional activation, Stress, 2009, vol. 12, no. 6, pp. 544–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chepur, S.V., Pluzhnikov, N.N., Chubar’, O.V., et al., Relief of microecological imbalances and barrier dysfunction of the intestinal mucosa in a therapeutic strategy for life-threatening conditions, Obzor Klinicheskoi Farmakologii i Lekarstvennoi Terapii, 2020, vol. 16, no. 3, pp. 197–212.

    Google Scholar 

  69. Christensen, H., May, M., Bowen, L., et al., Meningococcal carriage by age: A systematic review and meta-analysis, Lancet Infect. Dis., 2010, vol. 10, no. 12, pp. 853–861.

    Article  PubMed  Google Scholar 

  70. Chrousos, G.P., The stress response and immune function: Clinical implications. The 1999 Novera H. Spector Lecture, Ann. N.Y. Acad. Sci., 2000, vol. 917, no. 1, pp. 38–67.

    Article  CAS  PubMed  Google Scholar 

  71. Clarke, G., Stilling, R.M., Kennedy, P.J., et al., Minireview: Gut microbiota: The neglected endocrine organ, Mol. Endocrinol., 2014, vol. 28, no. 8, pp. 1221–1238.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Coats, S.R., Hashim, A., and Paramonov, N.A., Cardiolipins act as a selective barrier to toll-like receptor 4 activation in the intestine, Appl. Environ. Microbiol., 2016, vol. 82, no. 14, pp. 4264–4278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cogan, T.A., Thomas, A.O., Rees, L.E., et al., Norepinephrine increases the pathogenic potential of Campylobacter jejuni, Gut, 2007, vol. 56, no. 8, pp. 1060–1065.

    Article  CAS  PubMed  Google Scholar 

  74. Cole, R.I. and Sawchenko, P.E., Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus, J. Neurosci., 2002, vol. 22, no. 3, pp. 959–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Collins, J.F., Wessling-Resnick, M., and Knutson, M.D., Hepcidin regulation of iron transport, J. Nutr., 2008, vol. 138, no. 11, pp. 2284–2288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cooper, E.V., Gas-gangrene following injection of adrenaline, Lancet, 1946, vol. 247, no. 6396, pp. 459–461.

    Article  Google Scholar 

  77. Costa, M., Brookes, S.J., and Hennig, G.W., Anatomy and physiology of the enteric nervous system, Gut, 2000, vol. 47, suppl. IV, pp. IV15–IV19.

  78. Cross, J.H., Bradbury, R.S., Fulford, A.J., et al., Oral iron acutely elevates bacterial growth in human serum, Sci. Rep., 2015, vol. 5, p. 16670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cryan, J.F. and OʼMahony, S.M., The microbiome-gut-brain axis: From bowel to behavior, Neurogastroenterol. Motil., 2011, vol. 23, no. 3, pp. 187–192.

    Article  CAS  PubMed  Google Scholar 

  80. DʼArgenio, V. and Salvatore, F., The role of the gut microbiome in the healthy adult status, Clin. Chim. Acta, 2015, vol. 451, pp. 97–102.

    Article  PubMed  Google Scholar 

  81. Da Silva, S., Robbe-Masselot, C., Ait-Belgnaoui, A., et al., Stress disrupts mucus barrier in rat via mucin O-glycosylation shift: Prevention by a probiotic treatment, Am. J. Physiol.: Gastrointest. Liver Physiol., 2014, vol. 307, no. 4, pp. G420–G429.

    CAS  PubMed  Google Scholar 

  82. Dahl, W.J., Rivero Mendoza, D., and Lambert, J.M., Diet, nutrients and the microbiome, Prog. Mol. Biol. Transl. Sci., 2020, vol. 171, pp. 237–263.

    Article  CAS  PubMed  Google Scholar 

  83. Dame, R.T., Wyman, C., and Goosen, N., Structural basis for preferential binding of H-NS to curved DNA, Biochimie, 2001, vol. 83, no. 2, pp. 231–234.

    Article  CAS  PubMed  Google Scholar 

  84. David, L.A., Maurice, C.F., Carmody, R.N., et al., Diet rapidly and reproducibly alters the human gut microbiome, Nature, 2014, vol. 505, no. 7484, pp. 559–563.

    Article  CAS  PubMed  Google Scholar 

  85. De Jong, M.F.C., Molenaar, N., Beishuizen, A., and Groeneveld, A.B.J., Diminished adrenal sensitivity to endogenous and exogenous adrenocorticotropic hormone in critical illness: A prospective cohort study, Crit. Care, 2015, vol. 19, no. 1, p. 1.

    Article  PubMed  PubMed Central  Google Scholar 

  86. De Mendoza, D., Temperature sensing by membranes, Annu. Rev. Microbiol., 2014, vol. 68, pp. 101–116.

    Article  CAS  PubMed  Google Scholar 

  87. De Oliveira, N.E.M., Abranches, J., Gaca, A.O., et al., clpB, a class III heat-shock gene regulated by CtsR, is involved in thermotolerance and virulence of Enterococcus faecalis, Microbiology, 2011, vol. 157, no. 3, pp. 656–665.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Delaloye, J. and Calandra, T., Invasive candidiasis as a cause of sepsis in the critically ill patient, Virulence, 2014, vol. 5, no. 1, pp. 161–169.

    Article  PubMed  Google Scholar 

  89. Delory, M., Hallez, R., Letesson, J.-J., and De Bolle, X., An RpoH-like heat shock sigma factor is involved in stress response and virulence in Brucella melitensis 16M, J. Bacteriol., 2006, vol. 188, no. 21, pp. 7707–7710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. DeMorrow, S., Role of the hypothalamic-pituitary-adrenal axis in health and disease, Int. J. Mol. Sci., 2018, vol. 19, no. 4, p. 986.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dethlefsen, L., McFall-Ngai, M., and Relman, D.A., An ecological and evolutionary perspective on human-microbe mutualism and disease, Nature, 2007, vol. 449, no. 7164, pp. 811–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Deussing, J.M. and Chen, A., The corticotropin-releasing factor family: Physiology of the stress response, Physiol. Rev., 2018, vol. 98, no. 4, pp. 2225–2286.

    Article  CAS  PubMed  Google Scholar 

  93. Dickson, R.P., The microbiome and critical illness, Lancet Respir. Med., 2016, vol. 4, no. 1, pp. 59–72.

    Article  PubMed  Google Scholar 

  94. Dieterich, K.D., Lehnert, H., and De Souza, E.B., Corticotropin-releasing factor receptors: An overview, Exp. Clin. Endocrinol. Diabetes, 1997, vol. 105, no. 2, pp. 65–82.

    Article  CAS  PubMed  Google Scholar 

  95. Dietert, R., The Human Superorganism: How the Microbiome Is Revolutionizing the Pursuit of a Healthy Life, New York: Penguin Random House, 2016.

    Google Scholar 

  96. Digel, I., Primary thermosensory events in cells, Adv. Exp. Med. Biol., 2011, vol. 704, pp. 451–468.

    Article  CAS  PubMed  Google Scholar 

  97. Dobrindt, U. and Hacker, J., Regulation of tRNA5Leu-encoding gene leuX that is associated with a pathogenicity island in the uropathogenic Escherichia coli strain 536, Mol. Genet. Genomics, 2001, vol. 265, no. 5, pp. 895–904.

    Article  CAS  PubMed  Google Scholar 

  98. Doig, G.S., Heighes, P.T., Simpson, F., et al., Early enteral nutrition, provide within 24 h of injury or intensive care unit admission, significantly reduces mortality in critically ill patients: A meta-analysis of randomized controlled trials, Intensive Care Med., 2009, vol. 35, no. 12, pp. 2018–2027.

    Article  CAS  PubMed  Google Scholar 

  99. Dorman, C.J. and Dorman, M.J., DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression, Biophys. Rev., 2016, vol. 8, pp. 209–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dowd, S.E., Escherichia coli 0157:H7 gene expression in the presence of catecholamine norepinephrine, FEMS Microbiol. Lett., 2007, vol. 273, no. 2, pp. 214–223.

    Article  CAS  PubMed  Google Scholar 

  101. Drlica, K., Control of bacterial DNA supercoiling, Mol. Microbiol., 1992, vol. 6, no. 4, pp. 425–433.

    Article  CAS  PubMed  Google Scholar 

  102. Ducarmon, Q.R., Zwittink, R.D., Hornung, B.V.H., et al., Gut microbiota and colonization resistance against bacterial enteric infection, Microbiol. Mol. Biol. Rev., 2019, vol. 83, no. 3, p. e00007-19.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dunn, A.J., Cytokine activation of the HPA axis, Ann. N.Y. Acad. Sci., 2000, vol. 17, pp. 608–617.

    Article  Google Scholar 

  104. Dunn, A.J., Effects of cytokines and infections on brain neurochemistry, Clin. Neurosci. Res., 2006, vol. 6, nos. 1–2, pp. 52–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Eckburg, P.B., Bik, E.M., Bernstein, C.N., et al., Diversity of the human intestinal microbial flora, Science, 2005, vol. 308, no. 5728, pp. 1635–1638.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Eisenhofer, G., Aneman, A., Hooper, D., et al., Production and metabolism of dopamine and norepinephrine in mesenteric organs and liver of swine, Am. J. Physiol., 1995, vol. 268, no. 4 (pt 1), pp. G641–G649.

  107. Eisenhofer, G., Aneman, A., Hooper, D., et al., Mesenteric organ production, hepatic metabolism, and renal elimination of norepinephrine and its metabolites in humans, J. Neurochem., 1996, vol. 66, no. 4, pp. 1565–1573.

    Article  PubMed  Google Scholar 

  108. Elke, G. and Heyland, D.K., Enteral nutrition in critically ill septic patients—less or more?, J. Parenter. Enteral Nutr., 2015, vol. 39, no. 2, pp. 140–142.

    Article  Google Scholar 

  109. Elke, G., Kuhnt, E., Ragaller, M., et al., Enteral nutrition is associated with improved outcome in patients with severe sepsis. A secondary analysis of the VISEP trial, Med. Klin. Intensivmed. Notfmed., 2013, vol. 108, no. 3, pp. 223–233.

    Article  CAS  PubMed  Google Scholar 

  110. Elsholz, A.K., Michalik, S., Zuhlke, D., et al., CtsR, the gram-positive master regulator of protein quality control, feels the heat, EMBO J., 2010, vol. 29, no. 21, pp. 3621–3629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ene, I.V., Adya, A.K., Wehmeier, S., et al., Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen, Cell Microbiol., 2012, vol. 14, no. 9, pp. 1319–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Eriksson, S., Hurme, R., and Rhen, M., Low-temperature sensors in bacteria, Philos. Trans. R. Soc., B, 2002, vol. 357, no. 1423, pp. 887–893.

  113. Evans, D.G., Miles, A.A., and Niven, J.S., The enhancement of bacterial infections by adrenaline, Br. J. Exp. Pathol., 1948, vol. 29, no. 1, pp. 20–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Evans, J.M., Morris, L.S., and Marchesi, J.R., The gut microbiome: The role of a virtual organ in the endocrinology of the host, J. Endocrinol., 2013, vol. 218, no. 3, pp. R37–R47.

    Article  CAS  PubMed  Google Scholar 

  115. Fan, Y. and Pedersen, O., Gut microbiota in human metabolic health and disease, Nat. Rev. Microbiol., 2010, vol. 19, no. 1, pp. 55–71.

    Article  Google Scholar 

  116. Fantappie, L., Metruccio, M.M., Seib, K.L., et al., The RNA chaperone Hfq is involved in stress response and virulence in Nesseria meningitides and is a pleiotropic regulator of protein expression, Infect. Immun., 2009, vol. 77, no. 5, pp. 1842–1853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fawley, J. and Gourlay, D., Intestinal alkaline phosphatase: A summary of its role in clinical disease, J. Surg. Res., 2016, vol. 202, no. 1, pp. 225–234.

    Article  CAS  PubMed  Google Scholar 

  118. Felix, K.M., Tahsin, S., and Wu, H.J., Host-microbiota interplay in mediating immune disorders, Ann. N.Y. Acad. Sci., 2018, vol. 1417, no. 1, pp. 57–70.

    Article  PubMed  Google Scholar 

  119. Fernandez, P., Diaz, A.R., Re, M.F., et al., Identification of novel thermosensors in gram-positive pathogens, Front. Mol. Biosci., 2020, vol. 7, p. 592747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fischbach, M.A. and Sonnenburg, J.L., Eating for two: How metabolism establishes interspecies interactions in the gut, Cell Host Microbe, 2011, no. 4, pp. 336–347.

  121. Fitzgerald, S., Kary, S.C., Alshabib, E.Y., et al., Redefining the H-Ns protein family: A diversity of specialized core and accessory forms exhibit hierarchical transcriptional network integration, Nucleic Acids Res., 2020, vol. 48, no. 18, pp. 10184–10198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Flint, H.J., Scott, K.P., Duncan, S.H., et al., Microbial degradation of complex carbohydrates in the gut, Gut Microbes, 2012, vol. 3, no. 4, pp. 289–306.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Free, C.A. and Paik, V.S., Adrenal steroidogenic actions of cyclic nucleotide derivatives in the rat, Endocrinology, 1977, vol. 100, no. 5, pp. 1287–1293.

    Article  CAS  PubMed  Google Scholar 

  124. Freestone, P.P.E., Communication between bacteria and their hosts, Scientifica, 2013, vol. 2013, p. 361073.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Freestone, P.P.E., Haigh, R.D., Williams, P.H., and Lyte, M., Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers, FEMS Microbiol. Lett., 1999, vol. 172, no. 1, pp. 53–60.

    Article  CAS  PubMed  Google Scholar 

  126. Freestone, P.P.E., Haigh, R.D., and Lyte, M., Specificity of catecholamine-induced growth in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica, FEMS Microbiol. Lett., 2007a, vol. 269, no. 2, pp. 221–228.

    Article  CAS  PubMed  Google Scholar 

  127. Freestone, P.P.E., Walton, N.J., Haigh, R.D., and Lyte, M., Influence of dietary catechols on the growth of enteropathogenic bacteria, Int. J. Food Microbiol., 2007b, vol. 119, no. 3, pp. 159–169.

    Article  CAS  PubMed  Google Scholar 

  128. Freestone, P.P.E., Sandrini, S.M., Haigh, R.D., and Lyte, M., Microbial endocrinology: How stress influences susceptibility to infection, Trends Microbiol., 2008, vol. 16, no. 2, pp. 55–64.

    Article  CAS  PubMed  Google Scholar 

  129. Fremont, R.D. and Rice, T.W., Pros and cons of feeding the septic intensive care unit patient, Nutr. Clin. Pract., 2015, vol. 30, no. 3, pp. 344–350.

    Article  PubMed  Google Scholar 

  130. Fukatsu, K., Role of nutrition in gastroenterological surgery, Annals of Gastroenterological Surgery, 2019, vol. 3, no. 2, pp. 160–168.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gadgil, M., Kapur, V., and Hu, W.-S., Transcriptional response of Escherichia coli to temperature shift, Biotechnol. Prog., 2005, vol. 21, no. 3, pp. 689–699.

    Article  CAS  PubMed  Google Scholar 

  132. Gajer, P., Brotman, R.M., Bai, G., et al., Temporal dynamics of the human vaginal microbiota, Sci. Transl. Med., 2012, vol. 4, no. 132, p. 132ra52.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Gal-Mor, O., Valdez, Y., and Finlay, B.B., The temperature-sensing protein TlpA is repressed by PhoP and dispensable for virulence of Salmonella enterica serovar Typhimurium in mice, Microb. Infect., 2006, vol. 8, no. 8, pp. 2154–2162.

    Article  CAS  Google Scholar 

  134. Gavrilovic, L., Spasojevic, N., and Dronjak, S., Psychosocial stress-related changes in gene expression of norepinephrine biosynthetic enzymes in stellate ganglia of adult rats, Auton. Neurosci., 2009, vol. 150, nos. 1–2, pp. 144–146.

    Article  CAS  PubMed  Google Scholar 

  135. Goldberg, R.F., Austen, W.G., Zhang, X., et al., Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 9, pp. 3551–3556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gonzales Plaza, J.J., Small RNAs as fundamental players in the transference of information during bacterial infectious diseases, Front. Mol. Biosci., 2020, vol. 7, p. 101.

    Article  Google Scholar 

  137. Gophna, U. and Ron, E.Z., Virulence and the heat shock response, Int. J. Med. Microbiol., 2003, vol. 292, nos. 7–8, pp. 453–461.

    Article  CAS  PubMed  Google Scholar 

  138. Goyal, A., Wang, T., Dubinkina, V., and Maslov, S., Ecology-guided prediction of cross-feeding interactions in the humangut microbiome, Nat. Commun., 2021, vol. 12, no. 1, p. 1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Grainger, D.C., Structure and function of bacterial H-NS protein, Biochem. Soc. Trans., 2016, vol. 44, no. 6, pp. 1561–1569.

    Article  CAS  PubMed  Google Scholar 

  140. Haftah, A.H., Sharma, N., Brookes, M.J., et al., Tumor necrosis factor alpha causes hypoferraemia and reduced intestinal iron absorption in mice, Biochem. J., 2006, vol. 397, no. 1, pp. 61–67.

    Article  Google Scholar 

  141. Hamarneh, S.R., Mohamed, M.M., Economopoulos, K.P., et al., A novel approach to maintain gut mucosal integrity using an oral enzyme supplement, Ann. Surg., 2014, vol. 260, no. 4, pp. 706–714.

    Article  PubMed  Google Scholar 

  142. Han, S.J., Kim, M., DʼAgati, V.D., and Lee, H.T., Norepinephrine released by intestinal Paneth cells exacerbates ischemic AKI, Am. J. Physiol. Renal Physiol., 2020, vol. 318, no. 1, pp. F260–F272.

    Article  CAS  PubMed  Google Scholar 

  143. Haraikawa, M., Sogabe, N., Tanabe, R., et al., Vitamin K1 (phylloquinone) or vitamin K2 (menaquinone-4) induces intestinal alkaline phosphatase gene expression, J. Nutr. Sci. Vitaminol., 2011, vol. 57, no. 4, pp. 274–279.

    Article  CAS  PubMed  Google Scholar 

  144. Hatherill, M., Tibby, S.M., Hilliard, T., et al., Adrenal insufficiency in septic shock, Arch. Dis. Child., 1999, vol. 80, no. 1, pp. 51–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hauger, R.L., Grigoriadis, D.E., Dallman, M.F., et al., International Union of Pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands, Pharmacol. Rev., 2003, vol. 55, no. 1, pp. 21–26.

    Article  CAS  PubMed  Google Scholar 

  146. Hazel, J.R., Thermal adaptation in biological membranes: Is homeoviscous adaptation the explanation, Annu. Rev. Physiol., 1995, vol. 57, pp. 19–42.

    Article  CAS  PubMed  Google Scholar 

  147. Hegde, M., Wood, T.K., and Jayaraman, A., The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway, Appl. Microbiol. Biotechnol., 2009, vol. 84, no. 4, pp. 763–776.

    Article  CAS  PubMed  Google Scholar 

  148. Henriques, S.F., Dhaken, D.B., Serra, L., et al., Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behavior, Nat. Commun., 2020, vol. 11, no. 1, p. 4236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Herbst, K., Bujara, M., Heroven, A.K., et al., Intrinsic thermal sensing controls proteolysis of Yersinia regulator rova, PLoS Pathog., 2009, vol. 5, no. 5, p. e1000435.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Herman, J.P. and Tasker, J.G., Paraventricular hypothalamic mechanisms of chronic stress adaptation, Front. Endocrinol., 2016, vol. 7, p. 137.

    Article  Google Scholar 

  151. Hernandez, G., Velasco, N., Wainstein, C., et al., Gut mucosal atrophy after a short enteral fasting period in critically ill patients, J. Crit. Care, 1999, vol. 14, no. 2, pp. 73–77.

    Article  CAS  PubMed  Google Scholar 

  152. Heyland, D.K., Dhaliwal, R., Drover, J.W., et al., Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adylt patients, JPEN, J. Parenter. Enteral Nutr., 2003, vol. 27, no. 5, pp. 355–373.

    Article  PubMed  Google Scholar 

  153. Hirata, T., Keto, Y., Nakata, M., et al., Effects of serotonin 5-HT(3) receptor antagonists on CRF-induced abnormal colonic water transport and defecation in rats, Eur. J. Pharmacol., 2008, vol. 587, nos. 1–3, pp. 281–284.

    Article  CAS  PubMed  Google Scholar 

  154. Hoe, C.H., Raabe, C.A., Rozhdestvensky, T.S., and Tang, T.H., Bacterial sRNAs: Regulation in stress, Int. J. Med. Microbiol., 2013, vol. 303, no. 5, pp. 217–229.

    Article  CAS  PubMed  Google Scholar 

  155. Human Microbiome Project defines normal bacterial makeup of the body, National Institutes of Health, 2012. http://www.nih.gov/news-events/news-releases/nih-human-microbiome-project-defines-normal-bacterial-makeup-body. Cited January 14, 2023.

  156. Hurme, R., Berndt, K.D., Normark, S.J., and Rhen, M.A., A proteinaceous gene regulatory thermometer in Salmonella, Cell, 1997, vol. 90, no. 1, pp. 55–64.

    Article  CAS  PubMed  Google Scholar 

  157. Ikeh, M., Ahmed, Y., and Quinn, J., Phosphate acquisition and virulence in human fungal pathogens, Microorganisms, 2017, vol. 5, no. 3, p. 48.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Inda, M.E., Vandenbranden, M., Fernandez, A., and de Mendoza, D., A lipid-mediated conformational switch modulates the Thermosensing activity of DesK, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, no. 9, pp. 3579–3584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ito, T., Sekizuka, T., Kishi, N., et al., Conventional culture methods with commercially available media unveil the presence of novel culturable bacteria, Gut Microbes, 2019, vol. 10, no. 1, p. 77091.

    Article  Google Scholar 

  160. Itoi, K., Helmreich, D.I., Lopez-Figueroa, M.O., and Watson, S.J., Differential regulation of corticotropin-releasing hormone and vasopressin gene transcription in the hypothalamus by norepinephrine, J. Neurosci., 1999, vol. 19, no. 13, pp. 5464–5472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jacobs, J.H., Viboud, C., Tchetgen, E.T., et al., The association of meningococcal disease with influenza in the United States, 1989–2009, PLoS One, 2014, vol. 9, no. 9, p. e107486.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Jin, L., Chen, C., Guo, R., et al., Role of corticotropin-releasing hormone family peptides in androgen receptor and vitamin D receptor expression and translocation in human breast cancer MCF-7 cells, Eur. J. Pharmacol., 2012, vol. 684, nos. 1–3, pp. 27–35.

    Article  CAS  PubMed  Google Scholar 

  163. Jizhong, S., Qiaomin, W., Chao, W., and Yanqing, L., Corticotropin-releasing factor and Toll-like receptor gene expression is associated with low-grade inflammation in irritable bowel syndrome patients with depression, Gastroenterology Research and Practice, 2016, vol. 2016, p. 7394924.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kamada, N., Chen, G.Y., Inohara, N., and Nunez, G., Control of pathogens and pathobionts by the gut microbiota, Nat. Immunol., 2013, vol. 14, no. 7, pp. 685–690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kaminishi, T., Wilson, D.N., Takemoto, C., et al., A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction, Structure, 2007, vol. 15, no. 3, pp. 289–297.

    Article  CAS  PubMed  Google Scholar 

  166. Kamp, H.D. and Higgins, D.E., A protein thermometer controls temperature-dependent transcription of flagellar motility genes in Listeria monocytogenes, PLoS Pathog., 2011, vol. 7, no. 8, p. e1002153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kang, Y.M., He, R.L., Yang, L.M., et al., Brain tumor necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure, Cardiovasc. Res., 2009, vol. 83, no. 4, pp. 737–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kapp, L.D. and Lorsch, J.R., The molecular mechanics of eukaryotic translation, Annu. Rev. Biochem., 2004, vol. 73, pp. 657–704.

    Article  CAS  PubMed  Google Scholar 

  169. Karagüzel, G. and Cakir, E., Adrenal dysfunction in critically ill children, Minerva Endocrinol., 2014, vol. 39, no. 4, pp. 235–243.

    PubMed  Google Scholar 

  170. Karavolos, M.H., Winzer, K., Williams, P., and Khan, C.M., Pathogen espionage: Multiple bacterial adrenergic sensors eavesdrop on host communication systems, Mol. Microbiol., 2013, vol. 87, no. 3, pp. 455–465.

    Article  CAS  PubMed  Google Scholar 

  171. Kasprzak, A. and Adamek, A., The neuropeptide system and colorectal cancer liver metastases: mechanisms and management, Int. J. Mol. Sci., 2020, vol. 21, no. 10, p. 3494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kazmierczak, M.J., Wiedmann, M., and Boor, K.J., Alternative sigma factors and their roles in bacterial virulence, Microbiol. Mol. Biol. Rev., 2005, vol. 69, no. 4, pp. 527–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kelly, J.R., Kennedy, P.J., Cryan, J.F., et al., Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders, Front. Cell Neurosci., 2015, vol. 9, p. 392.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Keshavarzian, A., Choudhary, S., Holmes, E.W., et al., Preventing gut leakiness by oats supplementation ameliorates alcohol-induced liver damage in rats, J. Pharmacol. Exp. Ther., 2001, vol. 299, no. 2, pp. 442–448.

    CAS  PubMed  Google Scholar 

  175. Khodos, O.A., Ethylmethylhydroxypyridine succinate and morpholine 3-methyl-1,2,4-triazolil-5-thioacetate influence on proteolysis in blood serum in rats, Fundamental’nye Issledovaniya, 2014, no. 5 (part 6), pp. 1229–1332.

  176. Kiank, C., Tache, Y., and Larauche, M., Stress-related modulation of inflammation in experimental models of bowel disease and post-infectious irritable bowel syndrome: role of corticotropin-releasing factor receptors, Brain, Behav., Immun., 2010, vol. 24, no. 1, pp. 41–48.

    Article  CAS  PubMed  Google Scholar 

  177. Kimes, N.E., Grim, C.J., Johnson, W.R., et al., Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus, ISME J., 2012, vol. 6, no. 4, pp. 835–846.

    Article  CAS  PubMed  Google Scholar 

  178. Kis, B., Isse, T., Snipes, J.A., et al., Effects of LPS stimulation on the expression of prostaglandin carriers in the cells of the blood-brain and blood-cerebrospinal fluid barriers, J. Appl. Physiol., 2006, vol. 100, no. 4, pp. 1392–1399.

    Article  CAS  PubMed  Google Scholar 

  179. Kistler, E.B., Alsaigh, T., Chang, M., and Schmid-Schönbein, G.W., Impaired small-bowel barrier integrity in the presence of luminal pancreatic digestive enzymes leads to circulatory shock, Shock, 2012, vol. 38, no. 3, pp. 262–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kitamoto, S., Nagao-Kitamoto, H., Kuffa, P., and Kamada, N., Regulation of virulence: The rise and fall of gastrointestinal pathogens, J. Gastroenterol., 2016, vol. 51, no. 3, pp. 195–205.

    Article  PubMed  Google Scholar 

  181. Klinkert, B. and Narberhaus, F., Microbial thermosensors, Cell Mol. Life Sci., 2009, vol. 66, no. 16, pp. 2661–2676.

    Article  CAS  PubMed  Google Scholar 

  182. Kolesova, O.E. and Ukhanova, T.Yu., Antibacterial agent, RF Patent RU2157686C1, Bull. Izobret., 2000, no. 29.

  183. Koontalay, A., Sangsaikaew, A., and Khamrassame, A., Effect of a clinical nursing practice guideline of enteral nutrition care on the duration of mechanical ventilator for critically ill patients, Asian Nursing Research, 2020, vol. 14, no. 1, pp. 17–23.

    Article  PubMed  Google Scholar 

  184. Koren, O., Goodrich, J.K., Cullender, T.C., et al., Host remodeling of the gut microbiome and metabolic changes during pregnancy, Cell, 2012, vol. 150, no. 3, pp. 470–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kortman, G.A., Boleij, A., and Swinkels, D.W., Iron availability increases the pathogenic potential of Salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface, PLos One, 2012, vol. 7, no. 1, p. e29968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kortman, G.A., Raffatellu, M., Swinkels, D.W., and Tjalsma, H., Nutritional iron turned inside out: Intestinal stress from a gut microbial perspective, FEMS Microbiol. Rev., 2014, vol. 38, no. 6, pp. 1202–1234.

    Article  CAS  PubMed  Google Scholar 

  187. Kortmann, J. and Narberhaus, F., Bacterial RNA thermometers: Molecular zippers and switches, Nat. Rev. Microbiol., 2012, vol. 10, no. 4, pp. 255–265.

    Article  CAS  PubMed  Google Scholar 

  188. Krezalek, M.A., DeFazio, J., Zaborina, O., et al., The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury, Shock, 2016, vol. 45, no. 5, pp. 475–482.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Kuhl, F., Adiliaghdam, F., Cavallaro, P.M., et al., Intestinal alkaline phosphatase targets the gut barrier to prevent aging, JCI Insight, 2020, vol. 5, no. 6, p. e134049.

    Article  Google Scholar 

  190. Lagier, J.-C., Armougom, F., Million, M., et al., Microbial culturomics: Paradigm shift in the human gut microbiome study, Clin. Microbiol. Infect., 2012, vol. 18, no. 12, pp. 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  191. Lallés, J.-P., Intestinal alkaline phosphatase: Novel functions and protective effects, Nutr. Rev., 2014, vol. 72, no. 2, pp. 82–94.

    Article  PubMed  Google Scholar 

  192. Lallés, J.-P., Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition, Nutr. Rev., 2019, vol. 77, no. 10, pp. 710–724.

    Article  PubMed  Google Scholar 

  193. Lamarche, M.G., Wanner, B.L., Crépin, S., and Harel, J., The phosphate regulon and bacterial virulence: A regulatory network connecting phosphate homeostasis and pathogenesis, FEMS Microbiol. Rev., 2008, vol. 32, no. 3, pp. 461–473.

    Article  CAS  PubMed  Google Scholar 

  194. Larauche, M., Kiank, C., and Tache, Y., Corticotropin releasing factor signaling in colon and ileum: regulation by stress and pathophysiological implications, J. Physiol. Pharmacol., 2009, vol. 60, suppl. 7, pp. 33–46.

  195. Lee, P., Peng, H., Gelbart, T., et al., Regulation of hepcidin transcription by interleukin-1 and interleukin-6, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 6, pp. 1906–1910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lee, H.J., Kwon, Y.S., Park, C.O., et al., Corticotropin-releasing factor decreases IL-18 in the monocyte-derived dendritic cell, Exp. Dermatol., 2009, vol. 18, no. 3, pp. 199–204.

    Article  CAS  PubMed  Google Scholar 

  197. Lee, J.G., Kim, Y.S., Lee, Y.J., et al., Effect of immune-enhancing enteral nutrition enriched with or without beta-glucan on immunomodulation in critically ill patients, Nutrients, 2016, vol. 8, no. 6, p. 336.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Leiderman, I.N., Modern concept of nutritional support in critical conditions. 5 key problems, Intensivnaya Terapiya, 2005, vol. 14, no. 1, pp. 44–50.

    Google Scholar 

  199. Lesouhaitier, O., Veron, W., Chapalain, A., et al., Gram-negative bacterial sensors for eukaryotic signal molecules, Sensors, 2009, vol. 9, no. 9, pp. 6967–6990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lesouhaitier, O., Clamens, T., Rosay, T., et al., Host peptidic hormone affecting bacterial biofilm formation and virulence, J. Innate Immun., 2019, vol. 11, no. 3, pp. 227–241.

    Article  CAS  PubMed  Google Scholar 

  201. Ley, R.E., Hamady, M., Lozupone, C., et al., Evolution of mammals and their gut microbes, Science, 2008, vol. 320, no. 5883, pp. 1647–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Li, G.W., Oh, E., and Weissman, J.S., The anti-Shine–Dalgarno sequence drives translational pausing and codon choice in bacteria, Nature, 2012, vol. 484, no. 7395, pp. 538–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Li, J., Ma, X., Zhao, L., et al., Extended contact lens wear promotes corneal norepinephrine secretion and Pseudomonas aeruginosa infection in mice, Invest. Ophthalmol. Visual Sci., 2020, vol. 61, no. 4, p. 17.

    Article  CAS  Google Scholar 

  204. Li, L., Mendis, N., Trigui, H., et al., The importance of the viable but non-culturable state in human bacterial pathogens, Front. Microbiol., 2014, vol. 5, р. 258.

    Article  PubMed  Google Scholar 

  205. Li, Y., Powell, D.A., Shaffer, S.A., et al., LPS remodeling is a survival strategy for bacteria, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, no. 22, pp. 8716–8721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Libertucci, J. and Young, V.B., The role of the microbiota in infectious diseases, Nat. Microbiol., 2019, vol. 4, no. 1, pp. 35–45.

    Article  CAS  PubMed  Google Scholar 

  207. Liu, C., Niu, Y., Zhou, X., et al., Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism, Sci. Rep., 2015, vol. 5, p. 12929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Liu, W., Vierke, G., Wenke, A.K., et al., Crystal structure of the archeal heat shock regulator from Pyrococcus furiosus: A molecular chimera representing eukaryal and bacterial features, J. Mol. Biol., 2007, vol. 369, no. 2, pp. 474–488.

    Article  CAS  PubMed  Google Scholar 

  209. Locey, K.J. and Lennon, J.T., Scaling laws predict global microbial diversity, Proc. Natl. Acad. Sci. USA, 2016, vol. 113, no. 21, pp. 5970–5975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Loh, E., Kugelberg, E., Tracy, A., et al., Temperature triggers immune evasion by Neisseria meningitides, Nature, 2013, vol. 502, no. 7470, pp. 237–240.

    Article  CAS  PubMed  Google Scholar 

  211. Loh, E., Lavender, H., Tan, F., et al., Thermoregulation of meningococcal fHbp, an important virulence factor and vaccine antigen, is mediated by anti-ribosomal binding site sequences in the open reading frame, PLoS Pathog., 2016, vol. 12, no. 8, p. e1005794.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Loh, E., Righetti, F., Eichner, H., et al., RNA thermometers in bacterial pathogens, Microbiol. Spectrum, 2018, vol. 6, no. 2. https://doi.org/10.1128/microbiolspec.RWR-0012-2017

  213. Long, J., Zaborina, O., Holbrook, C., et al., Depletion of intestinal phosphate after operative injury activates the virulence of P. aeruginosa causing lethal gut-derived sepsis, Surgery, 2008, vol. 144, no. 2, pp. 189–197.

    Article  PubMed  Google Scholar 

  214. Lopez-Garcia, P. and Forterre, P., DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles, BioEssays, 2000, vol. 22, no. 8, pp. 738–745.

    Article  CAS  PubMed  Google Scholar 

  215. Lucchini, S., Rowley, G., Goldberg, M.D., et al., H-NS mediates the silencing of laterally acquired genes in bacteria, PLoS Pathog., 2006, vol. 2, no. 8, p. e81.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Lyte, M., The role of microbial endocrinology in infectious disease, J. Endocrinol., 1993, vol. 137, no. 3, pp. 343–345.

    Article  CAS  PubMed  Google Scholar 

  217. Lyte, M., Microbial endocrinology and infectious disease in the 21st century, Trends Microbiol., 2004, vol. 12, no. 1, pp. 14–20.

    Article  CAS  PubMed  Google Scholar 

  218. Lyte, M. and Bailey, M.T., Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma, J. Surg. Res., 1997, vol. 70, no. 2, pp. 195–201.

    Article  CAS  PubMed  Google Scholar 

  219. Lyte, M. and Ernst, S., Catecholamine induced growth of gram negative bacteria, Life Sci., 1992, vol. 50, no. 3, pp. 203–212.

    Article  CAS  PubMed  Google Scholar 

  220. Lyte, M. and Ernst, S., Alpha and beta adrenergic receptor involvement in catecholamine-induced of gram-negative bacteria, Biochem. Biophys. Res. Commun., 1993, vol. 190, no. 2, pp. 447–452.

    Article  CAS  PubMed  Google Scholar 

  221. Lyte, M., Frank, C.D., and Green, B.T., Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157:H7, FEMS Microbiol. Lett., 1996, vol. 139, nos. 2–3, pp. 155–159.

    Article  CAS  PubMed  Google Scholar 

  222. Ma, S., Shen, Q., Zhao, L.H., et al., Molecular basis for hormone recognition and activation of corticotropin-releasing factor receptors, Mol. Cell, 2020, vol. 77, no. 3, pp. 669–680.

    Article  CAS  PubMed  Google Scholar 

  223. Madrid, C., Nieto, J.M., Paytubi, S., et al., Temperature- and H-NS-dependent regulation of a plasmid-encoded virulence operon expressing Escherichia coli hemolysin, J. Bacteriol., 2002, vol. 184, no. 18, pp. 5058–5066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Majzoub, J.A., Corticotropin-releasing hormone physiology, Eur. J. Endocrinol., 2006, vol. 155, suppl. 1, pp. S71–S76.

  225. Mallott, E.K., Borries, C., Koenig, A., et al., Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayreʼs leaf monkeys, Sci. Rep., 2020, vol. 10, p. 9961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Malo, M.S., Alam, S.N., Mostafa, G., et al., Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota, Gut, 2010, vol. 59, no. 11, pp. 1476–1484.

    Article  CAS  PubMed  Google Scholar 

  227. Malo, M.S., Moaven, O., Muhammad, N., et al., Intestinal alkaline phosphatase promotes bacterial growth by reducing the concentration of luminal nucleotide triphosphates, Am. J. Physiol.: Gastrointest. Liver Physiol., 2014, vol. 306, no. 10, pp. G826–G838.

    CAS  PubMed  Google Scholar 

  228. Manning, T.S. and Gibson, G.R., Microbial-gut interactions in health and disease. Prebiotics, Best Pract. Res., Clin. Gastroenterol., 2004, vol. 18, no. 2, pp. 287–298.

    Article  PubMed  Google Scholar 

  229. Mansilla, M.C., Cybulski, L.E., Albanesi, D., and de Mendoza, D., Control of membrane lipid fluidity by molecular thermosensors, J. Bacteriol., 2004, vol. 186, no. 20, pp. 6681–6688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Marik, P.E. and Zaloga, G.P., Early enteral nutrition in acutely ill patients: A systematic review, Crit. Care Med., 2001, vol. 29, no. 12, pp. 2264–2270.

    Article  CAS  PubMed  Google Scholar 

  231. Marik, P.E., Enteral nutrition in the critically ill: Myths and misconceptions, Crit. Care Med., 2014, vol. 42, no. 4, pp. 962–969.

    Article  CAS  PubMed  Google Scholar 

  232. Marik, P.E. and Zaloga, G.P., Adrenal insufficiency during septic shock, Crit. Care Med., 2003, vol. 31, no. 1, pp. 141–145.

    Article  CAS  PubMed  Google Scholar 

  233. Martis, B.S., Forquet, R., Reverchon, S., et al., DNA supercoiling: An ancestral regulator of gene expression in pathogenic bacteria?, Comput. Struct. Biotechnol. J., 2019, vol. 17, pp. 1047–1055.

    Article  Google Scholar 

  234. Marx, C., The systemic adrenal stress response in severe sepsis and critical illness, Clinical Intensive Care, 2005, vol. 16, no. 2, pp. 57–64.

    Article  Google Scholar 

  235. Masson, G.S., Nair, A.R., Dange, R.B., et al., Toll-like receptor 4 promotes autonomic dysfunction, inflammation and microglia activation in the hypothalamic paraventricular nucleus: Role of endoplasmic reticulum stress, PLoS One, 2015, vol. 10, no. 3, p. e0122850.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Matsuno, Y., Sugai, A., Higashibata, H., et al., Effect of growth temperature and growth phase on the lipid composition of the archeal membrane from Thermococcus kodakaraensis, Biosci., Biotechnol., Biochem., 2009, vol. 73, no. 1, pp. 104–108.

    Article  CAS  PubMed  Google Scholar 

  237. Mayer, F.L., Wilson, D., and Hube, B., Candida albicans pathogenicity mechanisms, Virulence, 2013, vol. 4, no. 2, pp. 119–128.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Mba, I.E. and Nweze, E.I., Mechanism of Candida pathogenesis: Revisiting the vital drivers, Eur. J. Clin. Microbiol. Infect. Dis., 2020, vol. 39, no. 10, pp. 1797–1819.

    Article  PubMed  Google Scholar 

  239. McClave, S.A., Taylor, B.E., Martindale, R.G., et al., Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.), JPEN, J. Parenter. Enteral Nutr., 2016, vol. 40, no. 2, pp. 159–211.

    Article  CAS  PubMed  Google Scholar 

  240. Mena, N.P., Esparza, A., Tapia, V., et al., Hepcidin inhibits apical iron uptake in intestinal cells, Am. J. Physiol.: Gastrointest. Liver Physiol., 2008, vol. 294, no. 1, pp. G192–G198.

    CAS  PubMed  Google Scholar 

  241. Meng, L., Lu, Z., Xiaoteng, W., et al., Corticotropin-releasing factor changes the phenotype and function of dendritic cells in mouse mesenteric lymph nodes, Journal of Neurogastroenterology and Motility, 2015a, vol. 21, no. 4, pp. 571–580.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Meng, J., Banerjee, S., Li, D., et al., Opioid exacerbation of gram-positive sepsis, induced by gut microbial modulation, is rescued by IL-17A neutralization, Sci. Rep., 2015b, vol. 5, p. 10918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Meng, X., Ahator, S.D., and Zhang, L.H., Molecular mechanisms of phosphate stress activation of Pseudomonas aeruginosa quorum sensing systems, mSphere, 2020, vol. 5, no. 2, p. e00119–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Microbiology by numbers, Nat. Rev. Microbiol., 2011, vol. 9, no. 9, p. 628.

  245. Micutkova, L., Rychkova, N., Sabban, E.L., et al., Quantitation of changes in gene expression of norepinephrine biosynthetic enzymes in rat stellate ganglia induced by stress, Neurochem. Int., 2003, vol. 43, no. 3, pp. 235–242.

    Article  CAS  PubMed  Google Scholar 

  246. Miller, K.R., Smith, J.W., Harbrecht, B.G., and Benns, M.V., Early nutrition in trauma: Is there still any doubt?, Curr. Trauma Rep., 2016, vol. 2, no. 2, pp. 73–78.

    Article  Google Scholar 

  247. Miyata, K., Ito, H., and Fukudo, S., Involvement of the 5‑HT3 receptor in CRH-induced defecation in rats, Am. J. Physiol., 1998, vol. 274, no. 5, pp. G827–G831.

    CAS  PubMed  Google Scholar 

  248. Moreira, C.G., Russell, R., Mishra, A.A., et al., Bacterial adrenergic sensors regulate virulence of enteric pathogens in the gut, mBio, 2016, vol. 7, no. 3, p. e00826–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Morris, B.E., Henneberger, R., Huber, H., and Moissl-Eichinger, C., Microbial syntrophy: Interaction for the common good, FEMS Microbiol. Rev., 2013, vol. 37, no. 3, pp. 384–406.

    Article  CAS  PubMed  Google Scholar 

  250. Murakami, T., Kamada, K., Mizushima, K., et al., Changes in intestinal motility and gut microbiota composition in a rat stress model, Digestion, 2017, vol. 95, no. 1, pp. 55–60.

    Article  CAS  PubMed  Google Scholar 

  251. Mykytczuk, N.C., Trevors, J.T., Twine, S.M., et al., Membrane fluidity and fatty acid comparisons in psychrotrophic and mesophilic strains of Acidithiobacillus ferrooxidans under cold growth temperatures, Arch. Microbiol., 2010, vol. 192, no. 12, pp. 1005–1018.

    Article  CAS  PubMed  Google Scholar 

  252. Nadjm, B., Amos, B., Mtove, G., et al., WO guidelines for antimicrobial treatment in children admitted to hospital in an area of intense Plasmodium falciparum transmission: Prospective study, BMJ, 2010, vol. 340, p. c1350.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Nakade, Y., Fukuda, H., Iwa, M., et al., Restraint stress stimulates colonic motility via central corticotropin-releasing factor and peripheral 5-HT3 receptors in conscious rats, Am. J. Physiol.: Gastrointest. Liver Physiol., 2007, vol. 292, no. 4, pp. G1037–G1044.

    CAS  PubMed  Google Scholar 

  254. Nakahigashi, K., Yanagi, H., and Yura, T., Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: Conserved mRNA and protein segments for heat shock regulation, Nucleic Acids Res., 1995, vol. 23, no. 21, pp. 4383–4390.

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Nakayama, H., Nishimoto, Y., Hotta, K., and Sato, Y., Safety of early enteral nutrition for cardiac medical critically ill patients—A retrospective observational study, Circulation Reports, 2020, vol. 2, no. 10, pp. 560–564.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Nemeth, E., Rivera, S., Gabayan, V., et al., IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin, J. Clin. Invest., 2004, vol. 113, no. 9, pp. 1271–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Nichols, D., Cahoon, N., Trakhtenberg, E.M., et al., Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species, Appl. Environ. Microbiol., 2010, vol. 76, no. 8, pp. 2445–2450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Nicholls, S., MacCallum D.M., Kaffarnik, F.A., et al., Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans, Fungal Genet. Biol., 2011, vol. 48, no. 3, pp. 297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Njim, T., Dondorp, A., Mukaka, M., and Ohuma, E.O., Identifying risk factors for the development of sepsis during adult severe malaria, Malar. J., 2018, vol. 17, no. 1, p. 278.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Noda, S., Yamada, A., Tanabe, R., et al., Menaquinone-4 (vitamin K2) up-regulates expression of human intestinal alkaline phosphatase in Caco-2 cells, Nutr. Res., 2016, vol. 36, no. 11, pp. 1269–1276.

    Article  CAS  PubMed  Google Scholar 

  261. Nyein, P.P., Aung, N.M., Kyi, T.T., et al., High frequency of clinically significant bacteremia in adult hospitalized with Falciparum malaria, Open Forum Infect. Dis., 2016, vol. 3, no. 1, p. ofw028.

    Article  PubMed  PubMed Central  Google Scholar 

  262. O’Hara, A.M. and Shanahan, F., The gut flora as forgotten organ, EMBO Rep., 2006, vol. 7, no. 7, pp. 688–693.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Oami, T., Chihade, D.B., and Coopersmith, C.M., The microbiome and nutrition in critical illness, Current Opinion in Critical Care, 2019, vol. 25, no. 2, pp. 145–149.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Ogburn, K.D., Bottiglieri, T., Wang, Z., and Figueiredo-Pereira, M.E., Prostaglandin J2 reduces catechol-O-methyltransferase activity and enhances dopamine toxicity in neuronal cells, Neurobiol. Dis., 2006, vol. 22, no. 2, pp. 294–301.

    Article  CAS  PubMed  Google Scholar 

  265. Ojima, M., Motooka, D., Shimizu, K., et al., Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients, Dig. Dis. Sci., 2016, vol. 61, no. 6, pp. 1628–1634.

    Article  PubMed  Google Scholar 

  266. Okada, S. and Yamaguchi, N., Possible role of adrenoceptor in the hypothalamic paraventricular nucleus in corticotropin-releasing factor-induced sympatho-adrenomedullary outflow in rats, Auton. Neurosci., 2017, vol. 203, pp. 74–80.

    Article  CAS  PubMed  Google Scholar 

  267. Omura, K., Hirano, K., Kanehira, E., et al., Small amount of low-residue diet with parenteral nutrition can prevent decrease in intestinal mucosal integrity, Ann. Surg., 2000, vol. 231, no. 1, pp. 112–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Ono, S., Goldberg, M.D., Olsson, T., et al., H-NS is a part of a thermally controlled mechanism for bacterial gene regulation, Biochem. J., 2005, vol. 391, no. 2, pp. 203–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Pande, S. and Kost, C., Bacterial unculturability and the formation of intercellular metabolic networks, Trends Microbiol., 2017, vol. 25, no. 3, pp. 349–361.

    Article  CAS  PubMed  Google Scholar 

  270. Paone, P. and Cani, P.D., Mucus barrier, mucins and gut microbiota: The expected slimy partners?, Gut, 2020, vol. 69, no. 12, pp. 2232–2243.

    Article  CAS  PubMed  Google Scholar 

  271. Parikh, D., Hamid, A., Friedman, T.C., et al., Stress-induced analgesia and endogenous opioid peptides: The importance of stress duration, Eur. J. Pharmacol., 2011, vol. 650, nos. 2–3, pp. 563–567.

    Article  CAS  PubMed  Google Scholar 

  272. Parsot, C. and Mekalanos, J.J., Expression of ToxR, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by the heat shock response, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, no. 24, pp. 9898–9902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Pasechnik, I.N., Nutritional support for critically ill patients (review), Obshchaya Reanimatologiya, 2020, vol. 16, no. 4, pp. 40–59.

    Article  Google Scholar 

  274. Paulucci, N.S., Medeot, D.B., Dardanelli, M.S., and de Lema, M.G., Growth temperature and salinity impact fatty acid composition and degree of unsaturation in peanut-nodulating rhizobia, Lipids, 2011, vol. 46, no. 5, pp. 435–441.

    Article  CAS  PubMed  Google Scholar 

  275. Perez-Codas, A.E., Gosalbes, M.J., Friedrichs, A., et al., Gut microbiota disturbance during antibiotic therapy: A multi-omic approach, Gut, 2013, vol. 62, no. 11, pp. 1591–1601.

    Article  Google Scholar 

  276. Pfeiffer, C.J., Qiu, B., and Lam, S.K., Reduction of colonic mucus by repeated short-term stress enhances experimental colitis in rats, J. Physiol. (Paris), 2001, vol. 95, nos. 1–6, pp. 81–87.

    CAS  Google Scholar 

  277. Phu, N.H., Day, N.P.J., Tuan, P.Q., et al., Concomitant bacteremia in adults with severe falciparum malaria, Clin. Infect. Dis., 2020, vol. 71, no. 9, pp. e465–e470.

    PubMed  PubMed Central  Google Scholar 

  278. Pichon, C., du Merle, L., Lequeutre, I., and Le Bouguenec, C., The AfaR small RNA controls expression of the AfaD-VIII invasion in pathogenic Escherichia coli strains, Nucleic Acids Res., 2013, vol. 41, no. 10, pp. 5469–5482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Picker, M.A. and Wing, H.J., H-NS, its family members and their regulation of virulence genes in Shigella species, Genes, 2016, vol. 7, no. 12, p. 112.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Pizzuto, M., Lonez, C., Baroja-Mazo, A., et al., Saturation of acyl chains converts cardiolipin from an antagonist to an activator of Toll-like receptor-4, Cell Mol. Life Sci., 2019, vol. 76, no. 18, pp. 3667–3678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Polke, M., Hube, B., and Jacobsen, I.D., Candida survival strategies, Adv. Appl. Microbiol., 2015, vol. 91, pp. 139–235.

    Article  CAS  PubMed  Google Scholar 

  282. Prazeres, P.H.D.M., Almeida, V.M., Lousado, L., et al., Macrophages generate pericytes in the developing brain, Cell Mol. Neurobiol., 2018, vol. 38, no. 4, pp. 777–782.

    Article  CAS  PubMed  Google Scholar 

  283. Prete, A., Taylor, A.E., Bancos, I., et al., Prevention of adrenal crisis: Cortisol responses major stress compared to stress dose hydrocortisone delivery, J. Clin. Endocrinol. Metab., 2020, vol. 105, no. 7, pp. 2262–2274.

    Article  PubMed  PubMed Central  Google Scholar 

  284. Putignani, L., Del Chierico, F., Petrucca, A., et al., The human gut microbiota: A dynamic interplay with the host from birth to senescence settled during childhood, Pediatr. Res., 2014, vol. 76, no. 1, pp. 2–10.

    Article  PubMed  Google Scholar 

  285. Quade, N., Mendonca, C., Herbst, K., et al., Structural basis for intrinsic thermosensing by the master virulence regulator RovA of Yersinia, J. Biol. Chem., 2012, vol. 287, no. 43, pp. 35796–35803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Raa, J., Immune modulation by non-digestible and non-absorbable beta-1,3/1,6-glucan, Microb. Ecol. Health Dis., 2015, vol. 26, p. 27824.

    PubMed  Google Scholar 

  287. Rae, P.A., Gutmann, N.S., Tsao, J., and Schimmer, B.P., Mutations in cyclic AMP-dependent protein kinase and corticotropin (ACTH)-sensitive adenylate cyclase affect adrenal steroidogenesis, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, no. 4, pp. 1896–1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Ragonnaud, E. and Biragyn, A., Gut microbiota as the key controllers of “healthy” aging of elderly people, Immun. Ageing, 2021, vol. 18, no. 1, p. 2.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Rajewska, M., Wegrzyn, K., and Konieczny, I., AT-rich region and repeated sequences—The essential elements of replication origins of bacterial replicons, FEMS Microbiol. Rev., 2012, vol. 36, no. 2, pp. 408–434.

    Article  CAS  PubMed  Google Scholar 

  290. Ravi, A., Halstead, F.D., Bamford, A., et al., Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients, Microb. Genomes, 2019, vol. 5, no. 9, p. e000293.

    Google Scholar 

  291. Rea, K., Dinan, T.G., and Cryan, J.F., Gut microbiota: A perspective for psychiatrists, Neuropsychobiology, 2020, vol. 79, no. 1, pp. 50–62.

    Article  CAS  PubMed  Google Scholar 

  292. Renaud, M. and Miget, A., Role favorisant des perturbations locales causees par lʼadrenaline sur le developpement des infections microbiennes, C. R. Seances Soc. Biol. Ses Fil., 1930, vol. 103, pp. 1052–1054.

    CAS  Google Scholar 

  293. Rentea, R.M., Liedel, J.L., Welak, S.R., et al., Intestinal alkaline phosphatase administration in newborns is protective of gut barrier function in a neonatal necrotizing enterocolitis rat model, J. Pediatr. Surg., 2012, vol. 47, no. 6, pp. 1135–1142.

    Article  PubMed  Google Scholar 

  294. Rezq, S. and Abdel-Rahman, A.A., Rostral ventrolateral medulla EP3 receptor mediates the sympathoexcitatory and pressor effects of prostaglandin E2 in conscious rats, J. Pharmacol. Exp. Ther., 2016, vol. 359, no. 2, pp. 290–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Ries, L.N.A., Steenwyk, J.I., de Castro, P.A., et al., Nutritional heterogeneity among Aspergillus fumigatus strains has consequences for virulence in a strain- and host-dependent manner, Front. Microbiol., 2019, vol. 10, p. 854.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Rinninella, E., Raoul, P., Cintoni, M., et al., What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases, Microorganisms, 2019, vol. 7, no. 1, p. 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Rittner, H.L., Hackel, D., Voigt, P., et al., Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils, PLoS Pathog., 2009, vol. 5, no. 4, p. e1000362.

    Article  PubMed  PubMed Central  Google Scholar 

  298. Roberts, A., Matthews, J.B., Socransky, S.S., et al., Stress and the periodontal diseases: growth responses of periodontal bacteria to Escherichia coli stress-associated autoinducer and exogenous Fe, Oral Microbiol. Immunol., 2005, vol. 20, no. 3, pp. 147–153.

    Article  CAS  PubMed  Google Scholar 

  299. Rodiño-Janeiro, B.K., Alonso-Cotoner, C., Pigrau, M., et al., Role of corticotropin-releasing factor in gastrointestinal permeability, J. Neurogastroenterol. Motil., 2015, vol. 21, no. 1, pp. 33–50.

    Article  PubMed  PubMed Central  Google Scholar 

  300. Roncarati, D. and Scarlato, V., Regulation of heat-shock genes in bacteria: From signal sensing to gene expression output, FEMS Microbiol. Rev., 2017, vol. 41, no. 4, pp. 549–574.

    Article  CAS  PubMed  Google Scholar 

  301. Rorato, R., Menezes, A.M., Giusti-Paiva, A., et al., Prostaglandin mediates endotoxaemia-induced hypophagia by activation of pro-opiomalanocortin and corticotrophin-releasing factor neurons in rats, Exp. Physiol., 2009, vol. 94, no. 3, pp. 371–379.

    Article  CAS  PubMed  Google Scholar 

  302. Rowland, I., Gibson, G., Heinken, A., et al., Gut microbiota functions: Metabolism of nutrients and other food components, Eur. J. Nutr., 2018, vol. 57, no. 1, pp. 1–24.

    Article  CAS  PubMed  Google Scholar 

  303. Ruaud, A., Esquivel-Elizondo, S., de la Cuesta-Zuluaga, J., et al., Syntrophy via interspecies H2 transfer between Christensenella and Mehanobrevibacter underlies their global cooccurrence in the human gut, mBio, 2020, vol. 11, no. 1, p. e03235–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Ruggiero, C. and Lalli, E., Impact of ACTH signaling on transcriptional regulation of steroidogenic genes, Front. Endocrinol., 2016, vol. 7, p. 24.

    Article  Google Scholar 

  305. Saita, E.A. and de Mendoza, D., Thermosensing via transmembrane protein-lipid interactions, Biochim. Biophys. Acta, 2015, vol. 1848, no. 9, pp. 1757–1764.

    Article  CAS  PubMed  Google Scholar 

  306. Salomon, A., Berry, I., Tuite, A.R., et al., Influenza increases invasive meningococcal disease risk in temperate countries, Clin. Microbiol. Infect., 2020, vol. 26, no. 9, pp. 1257.e1–1257.e7.

    Article  CAS  PubMed  Google Scholar 

  307. Salvo-Romero, E., Martinez, C., Lobo, B., et al., Overexpression of corticotropin-releasing factor in intestinal mucosal eosinophils is associated with clinical severity in diarrhea-predominant irritable bowel syndrome, Sci. Rep., 2020, vol. 10, no. 1, p. 20706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Salvucci, E., The human-microbiome superorganism and its modulation to restore health, Int. J. Food Sci. Nutr., 2019, vol. 70, no. 7, pp. 781–795.

    Article  CAS  PubMed  Google Scholar 

  309. Sandrini, S., Alghofaili, F., Freestone, P., and Yesilkaya, H., Host stress hormone norepinephrine stimulates pneumococcal growth, biofilm formation and virulence gene expression, BMC Microbiol., 2014, vol. 14, p. 180.

    Article  PubMed  PubMed Central  Google Scholar 

  310. Sandrini, S., Aldriwesh, M., Alruways, M., and Freestone, P., Microbial endocrinology: Host-bacterial communication within the gut microbiome, J. Endocrinol., 2015, vol. 225, no. 2, pp. R21–R34.

    Article  CAS  PubMed  Google Scholar 

  311. Santos-Beneit, F., The Pho regulon: A huge regulatory network in bacteria, Front. Microbiol., 2015, vol. 6, p. 402.

    Article  PubMed  PubMed Central  Google Scholar 

  312. Saper, C.B., The dance of the perivascular and endothelial cells: Mechanisms of brain response to immune signaling, Neuron, 2010, vol. 65, no. 1, pp. 4–6.

    Article  CAS  PubMed  Google Scholar 

  313. Sarthi, M., Lodha, R., Vivekanandhan, S., and Arora, N.K., Adrenal status in children with septic shock using low-dose stimulation test, Pediatric Critical Care Medicine, 2007, vol. 8, no. 1, pp. 23–28.

    Article  PubMed  Google Scholar 

  314. Sasabuchi, Y., Matsui, H., Lefor, A.K., et al., Risks and benefits of stress ulcer prophylaxis for patients with severe sepsis, Crit. Care Med., 2016, vol. 44, no. 7, pp. e464–e469.

    Article  PubMed  Google Scholar 

  315. Sauer, R.S., Hackel, D., Morschel, L., et al., Toll like receptor (TLR)-4 as a regulator of peripheral endogenous opioid-mediated analgesia in inflammation, Mol. Pain, 2014, vol. 10, p. 10.

    Article  PubMed  PubMed Central  Google Scholar 

  316. Schiltz, J.C. and Sawchenko, P.E., Signaling the brain in systemic inflammation: The role of perivascular cells, Front. Biosci., 2003, vol. 8, pp. s1321–s1329.

    Article  CAS  PubMed  Google Scholar 

  317. Schirbel, A., Kessler, S., Rieder, F., et al., Pro-angiogenic activity of TLRs and NLRs: A novel link between gut microbiota and intestinal angiogenesis, Gastroenterology, 2013, vol. 144, no. 3, pp. 613–623.

    Article  CAS  PubMed  Google Scholar 

  318. Schorghuber, M. and Fruhwald, S., Effects of enteral nutrition on gastrointestinal function in patients who are critically ill, The Lancet Gastroenterology and Hepatology, 2018, vol. 3, no. 4, pp. 281–283.

    Article  PubMed  Google Scholar 

  319. Schumann, W., Thermosensor systems in eubacteria, Adv. Exp. Med. Biol., 2012, vol. 739, pp. 1–16.

    Article  CAS  PubMed  Google Scholar 

  320. Schweizer, H.P. and Choi, K.H., Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production, Arch. Microbiol., 2011, vol. 193, no. 3, pp. 227–234.

    Article  CAS  PubMed  Google Scholar 

  321. Scott, S.A., Fu, J., and Chang, P.V., Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor, Proc. Natl. Acad. Sci. USA, 2020, vol. 117, no. 32, pp. 19376–19387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Sekirov, I., Russell, S.L., Antunes, L.C., and Finlay, B.B., Gut microbiota in health and disease, Physiol. Rev., 2010, vol. 90, no. 3, pp. 859–904.

    Article  CAS  PubMed  Google Scholar 

  323. Sender, R., Fuchs, S., and Milo, R., Revised estimates for the number of human and bacterial cells in the body, PLoS Biol., 2016, vol. 14, no. 8, p. e1002533.

    Article  PubMed  PubMed Central  Google Scholar 

  324. Sengupta, P. and Garrity, P., Sensing temperature, Curr. Biol., 2013, vol. 23, no. 8, pp. R304–R307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Seron-Arbeloa, C., Zamora-Elson, M., Labarta-Monzon, L., and Mallor-Bonet, T., Enteral nutrition in critical care, J. Clin. Med. Res., 2013, vol. 5, no. 1, pp. 1–11.

    PubMed  PubMed Central  Google Scholar 

  326. Serova, L.I., Gueorguiev, V., Cheng, S.Y., and Sabban, E.L., Adrenocorticotropic hormone elevates gene expression for catecholamine biosynthesis in rat superior cervical ganglia and locus coeruleus by an adrenal independent mechanism, Neuroscience, 2008, vol. 153, no. 4, pp. 1380–1389.

    Article  CAS  PubMed  Google Scholar 

  327. Serrats, J., Schiltz, J.C., Garcia-Bueno, B., et al., Dual roles for perivascular macrophages in immune-to- brain signaling, Neuron, 2010, vol. 65, no. 1, pp. 94–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Servant, P., Grandvalet, C., and Mazodier, P., The RheA repressor is the thermosensor of the HSP18 heat shock response in Streptomyces albus, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 7, pp. 3538–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Seyoum, Y., Baye, K., and Humblot, C., Iron homeostasis in host and gut bacteria—a complex interrelationship, Gut Microbes, 2021, vol. 13, no. 1, pp. 1–19.

    Article  CAS  PubMed  Google Scholar 

  330. Shahul Hameed, U.F., Liao, C., Radhakrishnan, A.K., et al., H-NS uses an autoinhibitory conformational switch for environment-controlled gene silencing, Nucleic Acids Res., 2019, vol. 47, no. 5, pp. 2666–2680.

    Article  PubMed  Google Scholar 

  331. Shanahan, F., The host-microbe interface within the gut, Best Pract. Res., Clin. Gastroenterol., 2002, vol. 16, no. 6, pp. 915–931.

    Article  PubMed  Google Scholar 

  332. Shankar, B., Daphnee, D.K., Ramakrishnan, N., and Venkataraman, R., Feasibility, safety, and outcome of very early enteral nutrition in critically ill patients: Results of an observational study, J. Crit. Care, 2015, vol. 30, no. 3, pp. 473–475.

    Article  PubMed  Google Scholar 

  333. Shapiro, R.S. and Cowen, L.E., Thermal control of microbial development and virulence: Molecular mechanisms of microbial temperature sensing, mBio, 2012, vol. 3, no. 5, p. e00238–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Sharma, U., Olson, R.K., Erhart, F.N., et al., Prescription opioids induce gut dysbiosis and exacerbate colitis in a murine model of inflammatory bowel disease, Journal of Crohn’s and Colitis, 2020, vol. 14, no. 6, pp. 801–817.

    Article  PubMed  Google Scholar 

  335. Shen, R.L., Dang, X.Y., Dong, J.L., and Hu, X.Z., Effects of oat β-glucan and barley β-glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats, J. Agric. Food Chem., 2012, vol. 60, no. 45, pp. 11301–11308.

    Article  CAS  PubMed  Google Scholar 

  336. Shibahara, S., Morimoto, Y., Furutani, Y., et al., Isolation and sequence analysis of the human corticotropin-releasing factor precursor gene, EMBO J., 1983, vol. 2, no. 5, pp. 775–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Shimizu, K., Ogura, H., Goto, M., et al., Altered gut flora and environment in patients with severe sirs, J. Trauma, 2006, vol. 60, no. 1, pp. 126–133.

    Article  PubMed  Google Scholar 

  338. Shimizu, K., Ogura, H., Hamasaki, T., et al., Altered gut flora are associated with septic complications and death in critically ill patients with systemic inflammatory response syndrome, Dig. Dis. Sci., 2011, vol. 56, no. 4, pp. 1171–1177.

    Article  PubMed  Google Scholar 

  339. Shine, J. and Dalgarno, L., Determinant of cistron specificity in bacterial ribosomes, Nature, 1975, vol. 254, no. 5495, pp. 34–38.

    Article  CAS  PubMed  Google Scholar 

  340. Shreiner, A.B., Kao, J.Y., and Young, V.B., The gut microbiome in health and in disease, Curr. Opin. Gastroenterol., 2015, vol. 31, no. 1, pp. 69–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Sidorov, S.P., Sergeev, A.A., Chepur, S.V., et al., Morphofunctional changes in the gastrointestinal tract during intoxication with sulfur mustard, Vestnik Ural’skoi Meditsinskoi Akademicheskoi Nauki, 2022, vol. 19, no. 2, pp. 142–162.

    Article  Google Scholar 

  342. Simpson, E.R. and Waterman, M.R., Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH, Annu. Rev. Physiol., 1988, vol. 50, pp. 427–440.

    Article  CAS  PubMed  Google Scholar 

  343. Singer, P., Blaser, A.R., Berger, M.M., et al., ESPEN guideline on clinical nutrition in the intensive care unit, Clin. Nutr., 2019, vol. 38, no. 1, pp. 48–79.

    Article  PubMed  Google Scholar 

  344. Singh, L.K., Boucher, W., Pang, X., et al., Potent mast cell degranulation and vascular permeability triggered by urocortin through activation of corticotropin-releasing hormone receptors, J. Pharmacol. Exp. Ther., 1999, vol. 288, no. 3, pp. 1349–1356.

    CAS  PubMed  Google Scholar 

  345. Singh, S.B., Caroll-Portillo, A., Coffman, C., et al., Intestinal alkaline phosphatase exerts anti-inflammatory effects against lipopolysaccharide by inducing autophagy, Sci. Rep., 2020, vol. 10, no. 1, p. 3107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Singh, V.K. and Leu, S.J., Enhancing effect of corticotropin-releasing neurohormone on the production of interleukin-1 and interleukin-2, Neurosci. Lett., 1990, vol. 120, no. 2, pp. 151–154.

    Article  CAS  PubMed  Google Scholar 

  347. Slamti, L., Livny, J., and Waldor, M.K., Global gene expression and phenotypic analysis of a Vibrio cholerae rpoH deletion mutant, J. Bacteriol., 2007, vol. 189, no. 2, pp. 351–362.

    Article  CAS  PubMed  Google Scholar 

  348. Slominski, A.T., Zmijewski, M.A., and Zbytek, B., Key role of CRF in the skin stress response system, Endocr. Rev., 2013, vol. 34, no. 6, pp. 827–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Smith, S.B. and Ravel, J., The vaginal microbiota, host defence and reproductive physiology, J. Physiol., 2017, vol. 595, no. 2, pp. 451–463.

    Article  CAS  PubMed  Google Scholar 

  350. Smith, S.M. and Vale, W.W., The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress, Dialogues in Clinical Neuroscience, 2006, vol. 8, no. 4, pp. 383–395.

    Article  PubMed  PubMed Central  Google Scholar 

  351. Smith, N.W., Shorten, P.R., Altermann, E., et al., The classification and evolution of bacterial cross-feeding, Front. Ecol. Evol., 2019, vol. 7, p. 153.

    Article  Google Scholar 

  352. Sobczak, M., Salaga, M., Storr, M.A., and Fichna, J., Physiology, signaling, and pharmacology of opioid receptors and their ligands in the gastrointestinal tract: Current concepts and future perspectives, J. Gastroenterol., 2014, vol. 49, no. 1, pp. 24–45.

    Article  CAS  PubMed  Google Scholar 

  353. Sogabe, N., Maruyama, R., Hosori, T., and Goseki-Sone, M., Enhancement effects of vitamin K1 (phylloquinone) or vitamin K2 (menaquinone-4) on intestinal alkaline phosphatase activity in rats, J. Nutr. Sci. Vitaminol., 2007, vol. 53, no. 3, pp. 219–224.

    Article  CAS  PubMed  Google Scholar 

  354. Soto-Tinoco, E., Guerrero-Vargas, N.N., and Buijs, R.M., Interaction between the hypothalamus and the immune system, Exp. Physiol., 2016, vol. 101, no. 12, pp. 1463–1471.

    Article  CAS  PubMed  Google Scholar 

  355. Srinivasan, V., Hasbani, N.R., Mehta, N.M., et al., Early enteral nutrition is associated with improved clinical outcomes in critically ill children: A secondary analysis of nutrition support in the heart and lung failure – pediatric insulin titration trial, Pediatric Critical Care Medicine, 2020, vol. 21, no. 3, pp. 213–221.

    Article  PubMed  PubMed Central  Google Scholar 

  356. Staniszewska, M., Virulence factors in Candida species, Curr. Protein Pept. Sci., 2020, vol. 21, no. 3, pp. 313–323.

    Article  CAS  PubMed  Google Scholar 

  357. Stecher, B. and Hardt, W.D., The role of microbiota in infectious disease, Trends Microbiol., 2008, vol. 16, no. 3, pp. 107–114.

    Article  CAS  PubMed  Google Scholar 

  358. Steinmann, R. and Dersch, P., Thermosensing to adjust bacterial virulence in a fluctuating environment, Future Microbiol., 2013, vol. 8, no. 1, pp. 85–105.

    Article  CAS  PubMed  Google Scholar 

  359. Stengel, A. and Tache, Y., Neuroendocrine control of the gut during stress: Corticotropin-releasing factor signaling pathways in the spotlight, Annu. Rev. Physiol., 2009, vol. 71, pp. 219–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Stephen, A.M. and Cummings, J.H., The microbial contribution to human faecal mass, J. Med. Microbiol., 1980, vol. 13, no. 1, pp. 45–56.

    Article  CAS  PubMed  Google Scholar 

  361. Stephens, D.S., Greenwood, B., and Brandtzaeg, P., Epidemic meningitis, meningococcaemia, and Neisseria meningitides, Lancet, 2007, vol. 369, no. 9580, pp. 2196–2210.

    Article  PubMed  Google Scholar 

  362. Stewart, E.J., Growing unculturable bacteria, J. Bacteriol., 2012, vol. 194, no. 16, pp. 4151–4160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Sundberg, L.R., Kunttu, H.M., and Valtonen, E.T., Starvation can diversify the population structure and virulence strategies of an environmentally transmitting fish pathogen, BMC Microbiol., 2014, vol. 14, p. 67.

    Article  PubMed  PubMed Central  Google Scholar 

  364. Suzuki, I., Los, D.A., and Murata, N., Perception and transduction of low-temperature signals to induce desaturation of fatty acids, Biochem. Soc. Trans., 2000, vol. 28, no. 6, pp. 628–630.

    Article  CAS  PubMed  Google Scholar 

  365. Sy, B.M. and Tree, J.J., Small RNA regulation of virulence in pathogenic Escherichia coli, Front. Cell. Infect. Microbiol., 2020, vol. 10, p. 622202.

    Article  PubMed  Google Scholar 

  366. Tache, Y. and Perdue, M.H., Role of peripheral CRF signalling pathways in stress-related alterations of gut motility and mucosal function, Neurogastroenterol. Motil., 2004, vol. 16, suppl. 1, pp. 137–142.

  367. Tache, Y. and Million, M., Role of corticotropin-releasing factor signaling in stress-related alterations of colonic motility and hyperalgesia, J. Neurogastroenterol. Motil., 2015, vol. 21, no. 1, pp. 8–24.

    Article  PubMed  PubMed Central  Google Scholar 

  368. Teitelbaum, A.A., Gareau, M.G., Jury, J., et al., Chronic peripheral administration of corticotropin-releasing factor causes colonic barrier dysfunction similar to psychological stress, Am. J. Physiol.: Gastrointest. Liver Physiol., 2008, vol. 295, no. 3, pp. G452–G459.

    CAS  PubMed  Google Scholar 

  369. Tendeng, C. and Bertin, P.N., H-NS in gram-negative bacteria: A family of multifaceted proteins, Trends Microbiol., 2003, vol. 11, no. 11, pp. 511–518.

    Article  CAS  PubMed  Google Scholar 

  370. Thakur, A.K., Shakya, A., Husain, G.M., et al., Gut-microbiota and mental health: Current and future perspectives, Journal of Pharmacology and Clinical Toxicology, 2014, vol. 2, no. 1, p. 1016.

    Google Scholar 

  371. Tierney, B.T., Yang, Z., Luber, J.M., et al., The landscape of genetic content in the gut and oral human microbiome, Cell Host Microbe, 2019, vol. 26, no. 2, pp. 283-295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Trajtenberg, F., Albanesi, D., Ruetalo, N., et al., Allosteric activation of bacterial response regulators: The role of the cognate histidine kinase beyond phosphorylation, mBio, 2014, vol. 5, no. 6, p. e02105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Tsatsanis, C., Androulidaki, A., Alissafi, T., et al., Corticotropin-releasing factor and the urocortins induce the expression of TLR4 in macrophages via activation of the transcription factors PU.1 and AP-1, J. Immunol., 2006, vol. 176, no. 3, pp. 1869–1877.

    Article  CAS  PubMed  Google Scholar 

  374. Tse-Dinh, Y.C., Qi, H., and Menzel, R., DNA supercoiling and bacterial adaptation: Thermotolerance and thermoresistance, Trends Microbiol., 1997, vol. 5, no. 8, pp. 323–326.

    Article  CAS  PubMed  Google Scholar 

  375. Twittenhoff, C., Heroven, A.K., Muhlen, S., et al., An RNA thermometer dictates production of a secreted bacterial toxin, PLoS Pathog., 2020, vol. 16, no. 1, p. e1008184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Valentino, R.J. and van Bocksteale, E., Endogenous opioids: Opposing stress with a cost, F1000Prime Rep., 2015a, vol. 7, p. 58.

    Article  PubMed  PubMed Central  Google Scholar 

  377. Valentino, R.J. and van Bockstaele, E., Endogenous opioids: The downside of opposing stress, Neurobiol. Stress, 2015b, vol. 1, pp. 23–32.

    Article  PubMed  Google Scholar 

  378. Vandewalle, J. and Libert, C., Glucocorticoids in sepsis: To be or not to be, Front. Immunol., 2010, vol. 11, p. 1318.

    Article  Google Scholar 

  379. Vasil’ev, I.T., Mumladze, R.B., Kolesova, O.E., and Yakushin, V.I., Clinical effectiveness of Mexidol in the treatment of acute surgical diseases. https://medi.ru/info/3024. Cited December 19, 2022.

  380. Vasilache, A.M., Qian, H., and Blomqvist, A., Immune challenge by intraperitoneal administration of lipopolysaccharide directs gene expression in distinct blood-brain barrier cells towards enhanced prostaglandin E(2) signaling, Brain, Behav., Immun., 2015, vol. 48, pp. 31–41.

    Article  CAS  PubMed  Google Scholar 

  381. Vazhnichaya, E.M., Bobrova, N.A., Devyatkina, T.A., et al., The influence of emoxypine and mexidol on the development of etalon strain cultures of microorganisms and their susceptibility to antimicrobial drugs, Eksperimental’naya i Klinicheskaya Farmakologiya, 2019, vol. 82, no. 2, pp. 16–20.

    CAS  Google Scholar 

  382. Vedantam, G. and Hecht, D.W., Antibiotics and anaerobes of gut origin, Curr. Opin. Microbiol., 2003, vol. 6, no. 5, pp. 457–461.

    Article  CAS  PubMed  Google Scholar 

  383. Veri, A.O., Robbins, N., and Cowen, L.E., Regulation of the heat shock transcription factor Hsf1 in fungi: Implications for temperature-dependent virulence traits, FEMS Yeast Res., 2018, vol. 18, no. 5, p. foy041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Vila-Pérez, D. and Jordan-Garcia, I., Relative adrenal insufficiency in pediatric septic shock, Journal of Pediatric Intensive Care, 2015, vol. 4, no. 3, pp. 129–137.

    Article  PubMed  PubMed Central  Google Scholar 

  385. von Mentzer, B., Murata, Y., Ahlstedt, I., et al., Functional CRF receptors in BON cells stimulate serotonin release, Biochem. Pharmacol., 2007, vol. 73, no. 6, pp. 805–813.

    Article  CAS  PubMed  Google Scholar 

  386. Voreades, N., Kozil, A., and Weir, T.L., Diet and the development of the human intestinal microbiome, Front. Microbiol., 2014, vol. 5, p. 494.

    Article  PubMed  PubMed Central  Google Scholar 

  387. Walker, A.W., Duncan, S.H., Louis, P., and Flint, H.J., Phylogeny, culturing, and metagenomics of the human microbiota, Trends Microbiol., 2014, vol. 22, no. 5, pp. 267–274.

    Article  CAS  PubMed  Google Scholar 

  388. Walsh, C.J., Guinane, C.M., OʼToole, P.W., and Cotter, P.D., Beneficial modulation of the gut microbiota, FEBS Lett., 2014, vol. 588, no. 22, pp. 4120–4130.

    Article  CAS  PubMed  Google Scholar 

  389. Wan, X., Bi, J., Gao, X., et al., Partial enteral nutrition preserves elements of gut barrier function, including innate immunity, intestinal alkaline phosphatase (IAP) level, and intestinal microbiota in mice, Nutrients, 2015, vol. 7, no. 8, pp. 6294–6312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Wang, F., Meng, J., Zhang, L., et al., Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model, Sci. Rep., 2018, vol. 8, no. 1, p. 3596.

    Article  PubMed  PubMed Central  Google Scholar 

  391. Wang, F., Meng, J., Zhang, L., and Roy, S., Opioid use potentiates the virulence of hospital-acquired infection, increases systemic bacterial dissemination and exacerbates gut dysbiosis in a murine model of Citrobacter rodentium infection, Gut Microbes, 2020, vol. 11, no. 2, pp. 172–190.

    Article  PubMed  Google Scholar 

  392. Wang, Y., Ames, N.P., Tun, H.M., et al., High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk, Front. Microbiol., 2016, vol. 7, p. 129.

    PubMed  PubMed Central  Google Scholar 

  393. Wilson, B. and Typpo, K., Nutrition: A primary therapy in pediatric acute respiratory distress syndrome, Frontiers in Pediatrics, 2016, vol. 4, no. 4, p. 108.

    Article  PubMed  PubMed Central  Google Scholar 

  394. Wright, M.H., Fetzer, C., and Sieber, S.A., Chemical probes unravel an antimicrobial defense response triggered by binding of the human opioid dynorphin to bacterial sensor kinase, J. Am. Chem. Soc., 2017, vol. 139, no. 17, pp. 6152–6159.

    Article  CAS  PubMed  Google Scholar 

  395. Wu, H.J. and Wu, E., The role of gut microbiota in immune homeostasis and autoimmunity, Gut Microbes, 2012, vol. 3, no. 1, pp. 4–14.

    Article  PubMed  PubMed Central  Google Scholar 

  396. Wu, S.V., Yuan, P.Q., Lai, J., et al., Activation of type 1 CRH receptor isoforms induces serotonin release from human carcinoid BON-1N cells: An enterochromaffin cell model, Endocrinology, 2011, vol. 152, no. 1, pp. 126–137.

    Article  CAS  PubMed  Google Scholar 

  397. Yang, Y., Liu, L., Jiang, D., et al., Critical illness-related corticosteroid insufficiency after multiple traumas: A multicenter, prospective cohort study, J. Trauma Acute Care Surg., 2014, vol. 76, no. 6, pp. 1390–1396.

    Article  CAS  PubMed  Google Scholar 

  398. Ye, F., Brauer, T., Niehus, E., et al., Flagellar and global gene regulation in Helicobacter pylori modulated by changes in DNA supercoiling, Int. J. Med. Microbiol., 2007, vol. 297, no. 2, pp. 65–81.

    Article  CAS  PubMed  Google Scholar 

  399. Yu, Y., Zhang, Z.H., Wei, S.G., et al., Brain perivascular macrophages and the sympathetic response to inflammation in rats after myocardial infarction, Hypertension, 2010, vol. 55, no. 3, pp. 652–659.

    Article  CAS  PubMed  Google Scholar 

  400. Yu, Y., Liu, Z.Q., Liu, X.Y., et al., Stress-derived corticotropin releasing factor breaches epithelial endotoxin tolerance, PLoS One, 2013, vol. 8, no. 6, p. e65760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Zaborin, A., Smith, D., Garfield, K., et al., Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness, mBio, 2014, vol. 5, no. 5, p. e01361–14.

    Article  PubMed  PubMed Central  Google Scholar 

  402. Zaborina, O., Lepine, F., Xiao, G., et al., Dynorphine activates quorum sensing quinolone signaling in pseudomonas aeruginosa, PLoS Pathog., 2007, vol. 3, no. 3, p. e35.

    Article  PubMed  PubMed Central  Google Scholar 

  403. Zhang, Z.H. and Felder, R.B., Hypothalamic corticotrophin-releasing factor and norepinephrine mediate sympathetic and cardiovascular responses to acute intracarotid injection of tumor necrosis factor-alpha in the rat, J. Neuroendocrinol., 2008, vol. 20, no. 8, pp. 978–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Zhang, Y.M. and Rock, C.O., Membrane lipid homeostasis in bacteria, Nat. Rev. Microbiol., 2008, vol. 6, no. 3, pp. 222–233.

    Article  PubMed  Google Scholar 

  405. Zheng, D., Liwinski, T., and Elinav, E., Interaction between microbiota and immunity in health and disease, Cell Res., 2020, vol. 30, no. 6, pp. 492–506.

    Article  PubMed  PubMed Central  Google Scholar 

  406. Zhou, M., Simms, H.H., and Wang, P., Increased gut-derived norepinephrine release in sepsis: up-regulation of intestinal tyrosine hydroxylase, Biochim. Biophys. Acta, 2004, vol. 1689, no. 3, pp. 212–218.

    Article  CAS  PubMed  Google Scholar 

  407. Ziegler, M.G., Bao, X., Kennedy, B.P., et al., Location, development, control, and function of extraadrenal phenylethanolamine N-methyltransferase, Ann. N.Y. Acad. Sci., 2002, vol. 971, no. 1, pp. 76–82.

    Article  CAS  PubMed  Google Scholar 

  408. Zolotov, N.N., Smirnov, L.D., Kuz’mina, V.I., et al., 3‑Hydroxypyridine derivatives as inhibitors of proteolytic enzymes, Khim.-Farm. Zh., 1989, vol. 23, no. 2, pp. 133–135.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Chepur.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving humans and animals as subjects of study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chepur, S.V., Pluzhnikov, N.N., Saiganov, S.A. et al. Dynamics of Virulence of Commensals: Preventive Phenotypical Mutability. Biol Bull Rev 13, 537–558 (2023). https://doi.org/10.1134/S207908642306004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207908642306004X

Keywords:

Navigation