Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 24, 2023

Multi-objective optimization of an endoreversible closed Atkinson cycle

  • Zheng Gong , Yanlin Ge , Lingen Chen EMAIL logo and Huijun Feng

Abstract

Based on finite-time-thermodynamic theory and the model established in previous literature, the multi-objective optimization analysis for an endoreversible closed Atkinson cycle is conducted through using the NSGA-II algorithm. With the final state point temperature (T 2) of cycle compression process as the optimization variable and the thermal efficiency (η), the dimensionless efficient power ( E ̄ P ), the dimensionless ecological function ( E ̄ ) and the dimensionless power ( P ̄ ) as the optimization objectives, the influences of T 2 on the four optimization objectives are analyzed, multi-objective optimization analyses of single-, two-, three- and four-objective are conducted, and the optimal cycle optimization objective combination is chosen by using three decision-making methods which include LINMAP, TOPSIS, and Shannon Entropy. The result shows that when four-objective optimization is conducted, with the ascent of T 2, P ̄ descends, η ascends, both E ̄ and E ̄ P firstly ascend and then descend. In this situation, the deviation index is the smallest and equals to 0.2657 under the decision-making method of Shannon Entropy, so its optimization result is the optimal. The multi-objective optimization results are able to provide certain guidelines for the design of practical closed Atkinson cycle heat engine.


Corresponding author: Lingen Chen, Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan, 430205, P.R. China; Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, P.R. China; and School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430205, P.R. China, E-mail: ,

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 52171317 and 51779262

Funding source: Wuhan Institute of Technology

Award Identifier / Grant number: CX2022080

Acknowledgments

The authors wish to thank the reviewer for the careful, unbiased and constructive suggestions, which led to this revised manuscript.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This work is supported by the National Natural Science Foundation of China (Project Nos. 52171317 and 51779262) and Graduate Innovative Fund of Wuhan Institute of Technology (Project No. CX2022080).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

Nomenclature

C

thermal capacity rate (kW/K)

E

effectiveness of heat exchanger or ecological function (W)

E P

efficient power (W)

k

specific heat ratio

N

number of the heat transfer unit

P

power output (W)

P d

power density (W/m3)

T

temperature (K)

T 0

ambient temperature (K)

U

heat conductance (kW/K)

Greek symbols
η

thermal efficiency

τ

temperature ratio of heat reservoirs

σ

entropy generation rate (W/K)

Subscripts
H

hot-side

L

cold-side

wf

working fluid

max

maximum value

1–4

cycle state points

Superscripts
̄

dimensionless

Abbreviations
AC

Atkinson cycle

DI

deviation index

DMM

decision-making method

FTT

finite time thermodynamics

HE

heat engine

MOO

multi-objective optimization

OO

optimization objective

SH

specific heat

References

[1] B. Andresen, Finite-Time Thermodynamics, Copenhagen, University of Copenhagen, 1983.Search in Google Scholar

[2] K. H. Hoffmann, J. M. Burzler, and S. Schubert, “Endoreversible thermodynamics,” J. Non-Equilib. Thermodyn., vol. 22, no. 4, pp. 311–355, 1997.Search in Google Scholar

[3] L. G. Chen, C. Wu, and F. R. Sun, “Finite time thermodynamic optimization or entropy generation minimization of energy systems,” J. Non-Equilib. Thermodyn., vol. 24, no. 4, pp. 327–359, 1999. https://doi.org/10.1515/jnetdy.1999.020.Search in Google Scholar

[4] K. H. Hoffman, J. Burzler, A. Fischer, M. Schaller, and S. Schubert, “Optimal process paths for endoreversible systems,” J. Non-Equilib. Thermodyn., vol. 28, no. 3, pp. 233–268, 2003. https://doi.org/10.1515/jnetdy.2003.015.Search in Google Scholar

[5] T. N. F. Roach, P. Salamon, J. Nulton, et al.., “Application of finite-time and control thermodynamics to biological processes at multiple scales,” J. Non-Equilib. Thermodyn., vol. 43, no. 3, pp. 193–210, 2018. https://doi.org/10.1515/jnet-2018-0008.Search in Google Scholar

[6] B. Andresen and P. Salamon, “Future perspectives of finite-time thermodynamics,” Entropy, vol. 24, no. 5, p. 690, 2022. https://doi.org/10.3390/e24050690.Search in Google Scholar

[7] L. G. Chen and Y. L. Ge, Finite Time Thermodynamic Optimization for Air Standard Thermal Power Cycles, London, Book Publisher International, 2023.10.9734/bpi/mono/978-81-19761-94-4Search in Google Scholar

[8] L. G. Chen, S. S. Shi, Y. L. Ge, and H. J. Feng, “Power density performances and multi-objective optimizations for an irreversible Otto cycle with five specific heat models of working fluid,” Energy, vol. 282, p. 128817, 2023. https://doi.org/10.1016/j.energy.2023.128817.Search in Google Scholar

[9] D. Wu, Y. L. Ge, L. G. Chen, and L. Tian, “Effects of non-ideal gas working fluid on power and efficiency performances of an irreversible Otto cycle,” J. Non-Equilib. Thermodyn., vol. 48, no. 4, pp. 477–492, 2023. https://doi.org/10.1515/jnet-2023-0036.Search in Google Scholar

[10] G. Gonca and B. Guzel, “Exergetic and exergo-economical analyses of a gas-steam combined cycle system,” J. Non-Equilib. Thermodyn., vol. 47, no. 4, pp. 415–431, 2022. https://doi.org/10.1515/jnet-2022-0042.Search in Google Scholar

[11] C. Z. Qi, L. G. Chen, Y. L. Ge, and H. J. Feng, “Heat transfer effect on the performance of three-heat-reservoir thermal Brownian refrigerator,” J. Non-Equilib. Thermodyn., vol. 49, no. 1, pp. 11–25, 2024.10.1515/jnet-2023-0050Search in Google Scholar

[12] L. G. Chen, S. S. Shi, Y. L. Ge, and H. J. Feng, “Performance optimization of a diffusive mass transfer law irreversible isothermal chemical pump,” Energy, vol. 263, no. Part C, p. 125956, 2023. https://doi.org/10.1016/j.energy.2022.125956.Search in Google Scholar

[13] L. G. Chen, S. S. Shi, H. J. Feng, and Y. L. Ge, “Maximum ecological function performance for a three-reservoir endoreversible chemical pump,” J. Non-Equilib. Thermodyn., vol. 48, no. 2, pp. 179–194, 2023. https://doi.org/10.1515/jnet-2022-0062.Search in Google Scholar

[14] L. G. Chen, S. S. Shi, Y. L. Ge, and H. J. Feng, “Ecological function performance analysis and multi-objective optimization for an endoreversible four-reservoir chemical pump,” Energy, vol. 282, p. 128717, 2023. https://doi.org/10.1016/j.energy.2023.128717.Search in Google Scholar

[15] X. W. Liu, L. G. Chen, Y. L. Ge, H. J. Feng, F. Wu, and G. Lorenzini, “Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with spin-1/2 systems,” J. Non-Equilib. Thermodyn., vol. 46, no. 1, pp. 61–76, 2021. https://doi.org/10.1515/jnet-2020-0028.Search in Google Scholar

[16] J. J. Fernández, “Energy production in one-qubit quantum Agrawal machines,” J. Non-Equilib. Thermodyn., vol. 48, no. 3, pp. 303–312, 2023. https://doi.org/10.1515/jnet-2022-0081.Search in Google Scholar

[17] E. González-Mora, R. Poudel, and M. D. Durán-Garcí, “A practical upper-bound efficiency model for solar power plants,” J. Non-Equilib. Thermodyn., vol. 48, no. 3, pp. 331–344, 2023. https://doi.org/10.1515/jnet-2022-0080.Search in Google Scholar

[18] D. Ladino-Luna, J. C. Chimal-Eguía, J. C. Pacheco-Paez, and R. T. Páez-Hernández, “A simplified analysis of the Feynman pallet and ratchet mechanism considering different forms of generated power,” J. Non-Equilib. Thermodyn., vol. 48, no. 3, pp. 291–302, 2023. https://doi.org/10.1515/jnet-2022-0098.Search in Google Scholar

[19] L. G. Chen, F. K. Meng, Y. L. Ge, and H. J. Feng, “Performance optimization for a multielement thermoelectric refrigerator with linear phenomenological heat transfer law,” J. Non-Equilib. Thermodyn., vol. 46, no. 2, pp. 149–162, 2021. https://doi.org/10.1515/jnet-2020-0050.Search in Google Scholar

[20] L. G. Lafaurie-Ponce, F. Chejne, L. M. Ramirez-Aristeguieta, and C. A. Gomez, “A study of the nonlinear Thomson effect produced by changing the current in a thermoelectric cooler,” J. Non-Equilib. Thermodyn., vol. 47, no. 4, pp. 339–354, 2022. https://doi.org/10.1515/jnet-2022-0037.Search in Google Scholar

[21] L. G. Chen and G. Lorenzini, “Comparative performance for thermoelectric refrigerators with radiative and Newtonian heat transfer laws,” Case Stud. Therm. Eng., vol. 34, p. 102069, 2022. https://doi.org/10.1016/j.csite.2022.102069.Search in Google Scholar

[22] L. G. Chen and G. Lorenzini, “Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer,” Energy, vol. 270, p. 126824, 2023. https://doi.org/10.1016/j.energy.2023.126824.Search in Google Scholar

[23] L. G. Chen, Y. L. Ge, H. J. Feng, and T. T. Ren, “Energy and exergy analyses and optimizations for two-stage TEC driven by two-stage TEG with Thomson effect,” Sci. China: Technol. Sci., vol. 67, 2024, https://doi.org/10.1007/s11431-023-2498-9.Search in Google Scholar

[24] R. Paul and K. H. Hoffmann, “Optimizing the piston paths of Stirling cycle cryocoolers,” J. Non-Equilib. Thermodyn., vol. 47, no. 2, pp. 195–203, 2022. https://doi.org/10.1515/jnet-2021-0073.Search in Google Scholar

[25] Y. L. Ge, L. G. Chen, and H. J. Feng, “Optimal piston motion configuration for irreversible Otto cycle heat engine with maximum ecological function objective,” Energy Rep., vol. 8, pp. 2875–2887, 2022. https://doi.org/10.1016/j.egyr.2022.01.220.Search in Google Scholar

[26] V. Badescu, “Maximum work rate extractable from energy fluxes,” J. Non-Equilib. Thermodyn., vol. 47, no. 1, pp. 77–93, 2022. https://doi.org/10.1515/jnet-2021-0039.Search in Google Scholar

[27] L. G. Chen and S. J. Xia, “Heat engine cycle configurations for maximum work output with generalized models of reservoir thermal capacity and heat resistance,” J. Non-Equilib. Thermodyn., vol. 47, no. 4, pp. 329–338, 2022. https://doi.org/10.1515/jnet-2022-0029.Search in Google Scholar

[28] J. Li and L. G. Chen, “Optimal configuration of finite source heat engine cycle for maximum output work with complex heat transfer law,” J. Non-Equilib. Thermodyn., vol. 47, no. 4, pp. 433–441, 2022. https://doi.org/10.1515/jnet-2022-0024.Search in Google Scholar

[29] L. G. Chen and S. J. Xia, “Minimum power consumption of multistage irreversible Carnot heat pumps with heat transfer law of q ∝ (ΔT)m,” J. Non-Equilib. Thermodyn., vol. 48, no. 1, pp. 107–118, 2023. https://doi.org/10.1515/jnet-2022-0068.Search in Google Scholar

[30] L. G. Chen and S. J. Xia, “Power-optimization of multistage non-isothermal chemical engine system via Onsager equations, Hamilton-Jacobi-Bellman theory and dynamic programming,” Sci. China: Technol. Sci., vol. 66, no. 3, pp. 841–852, 2023. https://doi.org/10.1007/s11431-022-2229-6.Search in Google Scholar

[31] L. G. Chen and S. J. Xia, “Maximum work configuration of finite potential source endoreversible non-isothermal chemical engines,” J. Non-Equilib. Thermodyn., vol. 48, no. 1, pp. 41–53, 2023. https://doi.org/10.1515/jnet-2022-0045.Search in Google Scholar

[32] L. G. Chen and S. J. Xia, “Power output and efficiency optimization of endoreversible non-isothermal chemical engine via Lewis analogy,” Sci. China: Technol. Sci., vol. 66, no. 9, pp. 2651–2659, 2023. https://doi.org/10.1007/s11431-022-2281-8.Search in Google Scholar

[33] P. L. Li, L. G. Chen, S. J. Xia, R. Kong, and Y. L. Ge, “Total entropy generation rate minimization configuration of a membrane reactor of methanol synthesis via carbon dioxide hydrogenation,” Sci. China: Technol. Sci., vol. 65, no. 3, pp. 657–678, 2022. https://doi.org/10.1007/s11431-021-1935-4.Search in Google Scholar

[34] Y. L. Ge, L. G. Chen, F. R. Sun, and C. Wu, “Performance of an Atkinson cycle with heat transfer, friction and variable specific heats of working fluid,” Appl. Energy, vol. 83, no. 11, pp. 1210–1221, 2006. https://doi.org/10.1016/j.apenergy.2005.12.003.Search in Google Scholar

[35] Y. L. Ge, L. G. Chen, F. R. Sun, and C. Wu, “Performance of an endoreversible Atkinson cycle,” J. Energy Inst., vol. 80, no. 1, pp. 52–54, 2007. https://doi.org/10.1179/174602207x174540.Search in Google Scholar

[36] Y. L. Ge, L. G. Chen, and F. R. Sun, “Finite time thermodynamic modeling and analysis for an irreversible Atkinson cycle,” Therm. Sci., vol. 14, no. 4, pp. 887–896, 2010. https://doi.org/10.2298/tsci090128034g.Search in Google Scholar

[37] R. Ebrahimi, “Performance of an endoreversible Atkinson cycle with variable specific heat ratio of working fluid,” Am. J. Sci., vol. 6, no. 2, pp. 12–17, 2010.Search in Google Scholar

[38] R. Ebrahimi, “Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine,” Math. Comput. Model. Dyn. Syst., vol. 53, nos. 5/6, pp. 1289–1297, 2011. https://doi.org/10.1016/j.mcm.2010.12.015.Search in Google Scholar

[39] R. Ebrahimi, “Effect of volume ratio of heat rejection process on performance of an Atkinson cycle,” Acta Phys. Pol., A, vol. 133, no. 1, pp. 201–205, 2018. https://doi.org/10.12693/aphyspola.133.201.Search in Google Scholar

[40] M. H. Ahmadi, M. S. Pourkiaei, M. Ghazvini, and F. Pourfayaz, “Thermodynamic assessment and optimization of performance of irreversible Atkinson cycle,” Iran. J. Chem. Chem. Eng., vol. 39, no. 1, pp. 267–280, 2020.Search in Google Scholar

[41] E. Arabaci and B. Kilic, “Specific net work and mean effective pressure based thermodynamic analysis and optimization of ideal Atkinson cycle,” Konya J. Eng. Sci., vol. 10, no. 4, pp. 1035–1047, 2022. https://doi.org/10.36306/konjes.1120243.Search in Google Scholar

[42] Y. L. Ge, H. Wu, L. G. Chen, H. J. Feng, and Z. H. Xie, “Finite time and finite speed thermodynamic optimization for an irreversible Atkinson cycle,” Energy, vol. 270, p. 126856, 2023. https://doi.org/10.1016/j.energy.2023.126856.Search in Google Scholar

[43] L. G. Chen, F. L. Zhu, S. S. Shi, Y. L. Ge, and H. J. Feng, “Power and efficiency optimizations of Maisotsenko-Atkinson, Dual and Miller cycles and performance comparisons with corresponding traditional cycles,” Sci. China: Technol. Sci., vol. 67, 2024, https://doi.org/10.1007/s11431-023-2444-1.Search in Google Scholar

[44] D. Xia, L. G. Chen, F. R. Sun, and C. Wu, “Universal ecological performance for endoreversible heat engine cycles,” Int. J. Ambient Energy, vol. 27, no. 1, pp. 15–20, 2006. https://doi.org/10.1080/01430750.2006.9674997.Search in Google Scholar

[45] W. L. Zhang, L. G. Chen, F. R. Sun, and C. Wu, “Exergy-based ecological optimal performance for a universal endoreversible thermodynamic cycle,” Int. J. Ambient Energy, vol. 28, no. 1, pp. 51–56, 2007. https://doi.org/10.1080/01430750.2007.9675023.Search in Google Scholar

[46] J. C. Lin, “Ecological optimization for an Atkinson engine,” JP J. Heat Mass Transfer, vol. 4, no. 1, pp. 95–112, 2010.Search in Google Scholar

[47] P. Y. Wang and S. S. Hou, “Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions,” Energy Convers. Manage., vol. 46, nos. 15/16, pp. 2637–2655, 2005. https://doi.org/10.1016/j.enconman.2004.11.005.Search in Google Scholar

[48] Z. Gong, Y. L. Ge, and L. G. Chen, “Study on maximum effective power of endoreversible closed Atkinson cycle,” Energy Conserv., vol. 41, no. 12, pp. 35–37, 2022.Search in Google Scholar

[49] F. Angulo-Brown, J. Fernandez-Betanzos, and C. A. Diaz-Pico, “Compression ratio of an optimized Otto-cycle model,” Eur. J. Phys., vol. 15, no. 1, pp. 38–42, 1994. https://doi.org/10.1088/0143-0807/15/1/007.Search in Google Scholar

[50] Z. J. Yan, “Comment on “ecological optimization criterion for finite-time heat engines”,” Eur. Phys. J.: Appl. Phys., vol. 73, no. 7, p. 3583, 1993. https://doi.org/10.1063/1.354041.Search in Google Scholar

[51] L. G. Chen, F. R. Sun, and W. Z. Chen, “Ecological quality factors of thermodynamic cycle,” J. Eng. Therm. Energy Power, vol. 9, no. 6, pp. 374–376, 1994.Search in Google Scholar

[52] B. Sahin, A. Kodal, and H. Yavuz, “Efficiency of a Joule-Brayton engine at maximum power density,” J. Phys. D: Appl. Phys., vol. 28, no. 7, p. 1309, 1995. https://doi.org/10.1088/0022-3727/28/7/005.Search in Google Scholar

[53] B. Sahin, A. Kodal, T. Yilmaz, and H. Yavuz, “Maximum power density analysis of an irreversible Joule-Brayton engine,” J. Phys. D: Appl. Phys., vol. 29, no. 5, p. 1162, 1996. https://doi.org/10.1088/0022-3727/29/5/008.Search in Google Scholar

[54] B. Sahin, A. Kodal, and H. Yavuz, “Maximum power density analysis of an endoreversible Carnot heat engine,” Energy, vol. 21, no. 10, pp. 1219–1225, 1996. https://doi.org/10.1016/0360-5442(96)00068-0.Search in Google Scholar

[55] B. Sahin, U. Kesgin, A. Kodal, and N. Vardar, “Performance optimization of a new combined power cycle based on power density analysis of the Dual cycle,” Energy Convers. Manage., vol. 43, no. 15, pp. 2019–2031, 2002. https://doi.org/10.1016/s0196-8904(01)00149-2.Search in Google Scholar

[56] L. G. Chen, J. X. Lin, F. R. Sun, and C. Wu, “Efficiency of an Atkinson engine at maximum power density,” Energy Convers. Manage., vol. 39, nos. 3/4, pp. 337–341, 1998. https://doi.org/10.1016/s0196-8904(96)00195-1.Search in Google Scholar

[57] S. S. Shi, Y. L. Ge, L. G. Chen, and H. J. Feng, “Four objective optimization of irreversible Atkinson cycle based on NSGA-II,” Entropy, vol. 22, no. 10, p. 1150, 2020. https://doi.org/10.3390/e22101150.Search in Google Scholar PubMed PubMed Central

[58] S. S. Shi, Y. L. Ge, L. G. Chen, and H. J. Feng, “Performance optimizations with single-, bi-, tri- and quadru-objective for irreversible Atkinson cycle with nonlinear variation of working fluid’s specific heat,” Energies, vol. 14, no. 14, p. 4175, 2021. https://doi.org/10.3390/en14144175.Search in Google Scholar

[59] Z. J. Yan, “η and P of a Carnot engine at maximum ηP,” Chin. J. Nat., vol. 7, no. 6, p. 475, 1984.Search in Google Scholar

[60] T. Yilmaz, “A new performance criterion for heat engines: efficient power,” J. Energy Inst., vol. 79, no. 1, pp. 38–41, 2006. https://doi.org/10.1179/174602206x90931.Search in Google Scholar

[61] G. Gonca, “Performance analysis of an Atkinson cycle engine under effective power and effective power density condition,” Acta Phys. Pol., A, vol. 132, no. 4, pp. 1306–1313, 2017. https://doi.org/10.12693/aphyspola.132.1306.Search in Google Scholar

[62] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002. https://doi.org/10.1109/4235.996017.Search in Google Scholar

[63] M. Q. Zhang, L. Wang, Z. H. Cui, and W. A. Guo, “Fast nondominated ranking genetic algorithm based on hybrid strategy II,” J. Zhengzhou Univ., Eng. Sci., vol. 41, no. 4, pp. 23–27, 2020.Search in Google Scholar

[64] L. Wang, M. Q. Zhang, W. A. Guo, and Q. D. Wu, “Fast based on enhanced cross operators Nondominated Ranking Legacy II,” J. Nanchang Inst. Technol., vol. 39, no. 1, pp. 10–14, 2020.10.1155/2020/3094941Search in Google Scholar

[65] M. Q. Zhang, D. Y. Li, B. Hu, L. Wang, and Z. H. Cui, “Fast non-dominated sorting Genetic algorithm based on dimensional perturbation II,” J. Zhengzhou Univ., Eng. Sci., vol. 41, no. 1, pp. 38–43, 2019.Search in Google Scholar

[66] B. Hu, H. Xiao, H. Jin, and L. Wang, “Improved fast non-dominated sorting genetic algorithm II and its application in portfolio,” Microcomput. Appl., vol. 38, no. 2, pp. 9–11, 2022.Search in Google Scholar

[67] Y. H. Zhou, J. M. Ruan, G. T. Hong, and Z. Miao, “Multi-objective optimization of the basic and regenerative ORC integrated with working fluid selection,” Entropy, vol. 24, no. 7, p. 902, 2022. https://doi.org/10.3390/e24070902.Search in Google Scholar

[68] X. F. Qiu, L. G. Chen, Y. L. Ge, Q. R. Gong, and H. J. Feng, “Efficient power characteristic analyses and multi-objective optimization for an irreversible simple closed gas turbine cycle,” Entropy, vol. 24, no. 11, p. 1531, 2022. https://doi.org/10.3390/e24111531.Search in Google Scholar

[69] Y. L. Ge, S. S. Shi, L. G. Chen, D. F. Zhang, and H. J. Feng, “Power density analysis and multi-objective optimization for an irreversible Dual cycle,” J. Non-Equilib. Thermodyn., vol. 47, no. 3, pp. 289–309, 2022. https://doi.org/10.1515/jnet-2021-0083.Search in Google Scholar

[70] Q. K. Wu, L. G. Chen, Y. L. Ge, and S. S. Shi, “Multi-objective optimization of endoreversible magnetohydrodynamic cycle,” Energy Rep., vol. 8, pp. 8918–8927, 2022. https://doi.org/10.1016/j.egyr.2022.07.002.Search in Google Scholar

[71] Q. K. Wu, L. G. Chen, Y. L. Ge, and H. Feng, “Four-objective optimization of an irreversible magnetohydrodynamic cycle,” Entropy, vol. 24, no. 10, p. 1470, 2022. https://doi.org/10.3390/e24101470.Search in Google Scholar

[72] P. C. Zang, Y. L. Ge, L. G. Chen, and Q. R. Gong, “Power density characteristic analysis and multi-objective optimization of an irreversible porous medium engine cycle,” Case Stud. Therm. Eng., vol. 35, p. 102154, 2022. https://doi.org/10.1016/j.csite.2022.102154.Search in Google Scholar

[73] P. C. Zang, L. G. Chen, Y. L. Ge, S. S. Shi, and H. J. Feng, “Four-objective optimization for an irreversible porous medium cycle with linear variation in working fluid’s specific heat,” Entropy, vol. 24, no. 8, p. 1074, 2022. https://doi.org/10.3390/e24081074.Search in Google Scholar PubMed PubMed Central

[74] H. R. Xu, L. G. Chen, Y. L. Ge, and H. J. Feng, “Multi-objective optimization of Stirling heat engine with various heat transfer and mechanical losses,” Energy, vol. 256, p. 124699, 2022. https://doi.org/10.1016/j.energy.2022.124699.Search in Google Scholar

[75] H. R. Xu, L. G. Chen, Y. L. Ge, and H. J. Feng, “Four-objective optimization of an irreversible Stirling heat engine with linear phenomenological heat-transfer law,” Entropy, vol. 24, no. 10, p. 1491, 2022. https://doi.org/10.3390/e24101491.Search in Google Scholar PubMed PubMed Central

[76] W. H. Yang, H. J. Feng, L. G. Chen, and Y. L. Ge, “Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle,” Energy, vol. 278, p. 127755, 2023. https://doi.org/10.1016/j.energy.2023.127755.Search in Google Scholar

[77] P. Prajapati, V. Patel, B. D. Raja, and H. Jouhara, “Multi objective ecological optimization of an irreversible Stirling cryogenic refrigerator cycle,” Energy, vol. 274, p. 127253, 2023. https://doi.org/10.1016/j.energy.2023.127253.Search in Google Scholar

[78] L. G. Chen, P. L. Li, S. J. Xia, R. Kong, and Y. L. Ge, “Multi-objective optimization of membrane reactor for steam methane reforming heated by molten salt,” Sci. China: Technol. Sci., vol. 65, no. 6, pp. 1396–1414, 2022. https://doi.org/10.1007/s11431-021-2003-0.Search in Google Scholar

[79] H. J. Feng, L. G. Chen, and Y. L. Ge, “Constructal optimization of a rectangular non-uniform heat generation area with irregular high thermal conductivity material,” Case Stud. Therm. Eng., vol. 49, p. 103403, 2023. https://doi.org/10.1016/j.csite.2023.103403.Search in Google Scholar

[80] X. Y. Liu, H. J. Feng, L. G. Chen, and Y. L. Ge, “Constructal design of a rectangular porous fin considering minimization of maximum temperature difference and pumping power consumption,” Sci. China: Technol. Sci., vol. 67, 2024, https://doi.org/10.1007/s11431-023-2495-y.Search in Google Scholar

[81] Z. S. Dan, H. J. Feng, L. G. Chen, N. B. Liao, and Y. L. Ge, “Constructal design of printed circuit recuperator for S-CO2 cycle via multiobjective optimization algorithm,” Sci. China: Technol. Sci., vol. 67, 2024, https://doi.org/10.1007/s11431-023-2500-x.Search in Google Scholar

[82] P. L. Yu, Multiple-Criteria Decision Making, Concepts, Techniques, and Extensions, New York, Plenum Press, 1985.Search in Google Scholar

[83] D. L. Olson, Decision Aids for Selection Problems, New York, Springer, 1996.10.1007/978-1-4612-3982-6Search in Google Scholar

[84] J. L. Guisado, F. Jiménez-Morales, and J. M. Guerra, “Application of shannon’s entropy to classify emergent behaviors in a simulation of laser dynamics,” Math. Comput. Model., vol. 42, pp. 847–854, 2005. https://doi.org/10.1016/j.mcm.2005.09.012.Search in Google Scholar

Received: 2023-06-24
Accepted: 2023-11-01
Published Online: 2023-11-24
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.5.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2023-0051/html
Scroll to top button