Skip to main content
Log in

Crystal chemistry and origin of epidote-(Sr) in alkaline rocks of the teschenite association (Silesian Unit, Outer Western Carpathians, Czech Republic)

  • Research
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A new occurrence of epidote-(Sr) CaSr(Al2Fe3+)[Si2O7][SiO4]O(OH), Sr-REE-rich epidote and Sr-rich allanite-(Ce) is located in Lower Cretaceous, Sr-rich hydrothermally altered leucocratic dykes penetrating alkaline igneous rocks (teschenites) near the Nový Jičín town (the Silesian Unit, Outer Western Carpathians). The dykes contain phenocrysts of pyroxene, amphibole, biotite, fluorapatite and dominant felsic groundmass consisting mostly of alkali feldspars and zeolites (analcime, natrolite and thomsonite-Ca). Accessory minerals include Ti-rich magnetite, prehnite, chamosite, pyrite, calcite, (OH, F)-rich grossular, epidote-group minerals, HFSE-, REE-rich minerals, Sr-rich baryte and slawsonite. The Sr-rich epidote forms columnar crystals or irregular aggregates, which are mostly spatially related to chamosite-titanite pseudomorphs; it contains 0.15–0.81 apfu Sr, ≤ 0.55 apfu REE; Fe3+/(Fe3+ + Al) = 0.16–0.48. The Sr2+ substitutes Ca2+ in the A2 site by a coupled substitution involving other A2 (REE3+, Th4+) or M (Al3+, Fe3+, Fe2+) cations. The Sr-rich epidote crystallized from hydrothermal solutions, probably at temperatures between ~ 250–430 °C, during cooling of the host rock. The dykes show higher Sr contents (5680–7830 ppm) and 87Sr/86Sri(120 Ma) ratios (~ 0.7046–0.7047) compared to host mesocratic teschenites (1310–1470 ppm Sr and ~ 0.7038–0.7045, respectively). The Sr isotopes indicate origin of most Sr from primary magmatic plagioclase in parent teschenite. Nevertheless, there also participated external fluids, derived from the Lower Cretaceous seawater or diagenetic waters related to associated siliciclastic sediments with 87Sr/86Sri(120 Ma) = ~ 0.7073–0.7083. These more radiogenic sources contributed at least 6–21% of the bulk Sr budget of the studied Sr-rich epidote-bearing leucocratic dykes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armbruster T, Gnos E, Dixon R, Gutzmer J, Hejny C, Döbelin N, Medenbach O (2002) Manganvesuvianite and tweddillite, two new Mn3+ minerals from the Kalahari manganese fields, South Africa. Mineral Mag 66:137–150. https://doi.org/10.1180/0026461026610018

    Article  CAS  Google Scholar 

  • Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Gieré R, Heuss-Assbichler S, Liebscher A, Menchetti S, Pan Y, Pasero M (2006) Recommended nomenclature of epidote-group minerals. Eur J Mineral 18:551–567. https://doi.org/10.1127/0935-1221/2006/0018-0551

    Article  CAS  Google Scholar 

  • Barrat JA, Zanda B, Moynier F, Bollinger C, Liorzou C, Bayon G (2012) Geochemistry of CI chondrites: major and trace elements, and Cu and Zn isotopes. Geochim Cosmochim Acta 83:79–92. https://doi.org/10.1016/j.gca.2011.12.011

    Article  ADS  CAS  Google Scholar 

  • Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance on the oxidation state of europium. Chem Geol 93:219–230. https://doi.org/10.1016/0009-2541(91)90115-8

    Article  ADS  CAS  Google Scholar 

  • Bau M, Möller P (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineral Petrol 45:231–246. https://doi.org/10.1007/bf01163114

    Article  CAS  Google Scholar 

  • Bayliss P (1975) Nomenclature of the trioctahedral chlorites. Canad Mineral 13:178–185

    Google Scholar 

  • Bonazzi P, Menchetti S (1995) Monoclinic members of the epidote group: Effect of the Al ↔ Fe3+ ↔ Fe2+ substitution and the entry of REE3+. Mineral Petrol 53:133–153. https://doi.org/10.1007/BF01171952

    Article  ADS  CAS  Google Scholar 

  • Bonazzi P, Menchetti S, Palenzona A (1990) Strontiopiemontite, a new member of the epidote group, from Val Graveglia, Liguria, Italy. Eur J Mineral 2:519–523. https://doi.org/10.1127/ejm/2/4/0519

    Article  CAS  Google Scholar 

  • Botor D, Dunkl I, Rauch-Włodarska M, von Eynatten H (2006) Attempt to dating of accretion in the West Carpathian Flysch Belt: apatite fission track thermochronology of tuff layers. Geolines 20:21–23

    Google Scholar 

  • Brastad K (1985) Sr metasomatism, and partition of Sr between the mineral phases of a meta-eclogite from Bjørkedalen, West Norway. Tschermaks Min Petr Mitt 34:87–103

    Article  CAS  Google Scholar 

  • Brunarska I, Anczkiewicz R (2019) Geochronology and Sr–Nd–Hf isotope constraints on the petrogenesis of teschenites from the type-locality in the Outer Western Carpathians. Geol Carpath 70:222–240. https://doi.org/10.2478/geoca-2019-0013

    Article  ADS  CAS  Google Scholar 

  • Buriánek D, Bubík M (2012) Rocks of teschenite association in the surrounding of town of Valašské Meziříčí. Acta Mus Moraviae Sci Geol 97(1):105–127 (in Czech)

    Google Scholar 

  • Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Min 23:471–485. https://doi.org/10.1180/claymin.1988.023.4.13

    Article  ADS  Google Scholar 

  • Cháb J, Stráník Z, Eliáš M, Adamovič J, Aichler J, Babůrek J, Breiter K, Cajz V, Domečka K, Fišera M, Hanžl P, Holub V, Hradecký P, Chlupáč I, Klomínský J, Krejčí Z, Lexa J, Mašek J, Mlčoch B, Opletal M, Otava J, Pálenský P, Potfaj M, Prouza V, Roetzel R, Růžička M, Schovánek P, Slabý J, Valečka J, Žáček V (eds) (2007) Geological map of the Czech Republic 1:500 000, ČGS Praha

  • Cotterell T, Tayler R (2012) Epidote-(Sr) and piemontite-(Sr): two minerals new to Britain from Benallt Mine, Pen Llŷn, Gwynedd, Wales. UK J Mines Minerals 33:39–42

    Google Scholar 

  • Davidson J (1998) Strontium in igneous rocks. In: Marshall CP, Fairbridge RW (eds) Geochemistry. Encyclopedia of earth science. Springer, Dordrecht, Netherlands. https://doi.org/10.1007/1-4020-4496-8_300

  • Deer WA, Howie RA, Zussman J (2001) Rock-forming minerals, Vol. 4A, Framework silicates: Feldspars, 2nd edn. The Geological Society, London

    Google Scholar 

  • Dolníček Z, Kropáč K, Uher P, Polách M (2010a) Mineralogical and geochemical evidence for multi-stage origin of mineral veins hosted by teschenites at Tichá, Outer Western Carpathians, Czech Republic. Chem Erde-Geochem 70:267–282. https://doi.org/10.1016/j.chemer.2010.03.003

    Article  ADS  CAS  Google Scholar 

  • Dolníček Z, Urubek T, Kropáč K (2010b) Post-magmatic hydrothermal mineralization associated with Cretaceous picrite (Outer Western Carpathians, Czech Republic): interaction between host rock and externally derived fluid. Geol Carpath 61:327–339. https://doi.org/10.2478/v10096-010-0019-y

    Article  ADS  CAS  Google Scholar 

  • Dolníček Z, Kropáč K, Janíčková K, Urubek T (2012) Diagenetic source of fluids causing the hydrothermal alteration of teschenites in the Silesian Unit, Outer Western Carpathians, Czech Republic: Petroleum-bearing vein mineralization from the Stříbrník site. Mar Petrol Geol 37:27–40. https://doi.org/10.1515/geoca-2015-0003

    Article  ADS  CAS  Google Scholar 

  • Dostal J, Owen JV (1998) Cretaceous alkaline lamprophyres from northeastern Czech Republic: geochemistry and petrogenesis. Geol Rundsch 87:67–77. https://doi.org/10.1007/s005310050190

    Article  ADS  CAS  Google Scholar 

  • Eliáš M (1970) Lithology and sedimentology of the Silesian Unit in the Moravskoslezské Beskydy Mts. Sborn Geol Věd Geol 18:7–99 (in Czech)

    Google Scholar 

  • Eliáš M, Skupien P, Vašíček Z (2003) A proposal for the modification of the lithostratigraphical division of the lower part of the Silesian Unit in the Czech area (Outer Western Carpathians). Sbor věd Prací Vys Šk báň-Techn Univ. Ř horn-geol 49:7–15 (in Czech)

    Google Scholar 

  • Franz G, Liebscher A (2004) Physical and chemical properties of the epidote minerals – an introduction. In: Liebscher A, Franz G (eds) Epidotes. Rev Mineral Geochem, vol 56. Mineralogical Society of America, Washington, pp 1–82. https://doi.org/10.2138/gsrmg.56.1.1

    Chapter  Google Scholar 

  • Frei D, Liebscher A, Franz G, Dulski P (2004) Trace element geochemistry of epidote minerals. Rev Mineral Geochem 56:553–605. https://doi.org/10.2138/gsrmg.56.1.553

    Article  CAS  Google Scholar 

  • Froitzheim N, Plašienka D, Schuster R (2008) Alpine tectonics of the Alps and Western Carpathians. In: McCann T (ed) Geology of Central Europe 2: Mesozoic and Cenozoic. Bonn University, Germany, pp 1141–1232. https://doi.org/10.1144/CEV2P.6

    Chapter  Google Scholar 

  • Gieré R (1990) Hydrothermal mobility of Ti, Zr and REE: examples from the Bergell and Adamello contact aureoles (Italy). Terra Nova 2:60–67. https://doi.org/10.1111/j.1365-3121.1990.tb00037.x

    Article  ADS  Google Scholar 

  • Gieré R, Sorensen SS (2004) Allanite and other REE-rich epidote-group minerals. In: Liebscher A, Franz G (eds) Epidotes. Rev Mineral Geochem, vol 56. Mineralogical Society of America, Washington, pp 431–493. https://doi.org/10.2138/gsrmg.56.1.431

    Chapter  Google Scholar 

  • Gieré R, Virgo D, Popp RK (1999) Oxidation state of iron and incorporation of REE in allanite. Jour Conf Abstr 4:721. https://doi.org/10.2138/gsrmg.56.1.431

    Article  Google Scholar 

  • Grabowski J, Krzemiński L, Nescieruk P, Szydlo A, Paszkowski M, Pecskay Z, Wójtowicz A (2003) Geochronology of teschenitic intrusions in the Outer Western Carpathians of Poland–constraints from 40K/40Ar ages and biostratigraphy. Geol Carpath 54:385–393

    CAS  Google Scholar 

  • Grapes R, Watanabe T (1984) Al-Fe3+ and Ca-Sr2+ epidotes in metagreywacke-quartzofeldspathic schist, Southern Alps, New Zealand. Am Mineral 69:490–498

    CAS  Google Scholar 

  • Gromet LP, Silver LT (1983) Rare earth element distribution among minerals in a granodiorite and their petrogenetic implications. Geochim Cosmochim Acta 47:925–939. https://doi.org/10.1016/0016-7037(83)90158-8

    Article  ADS  CAS  Google Scholar 

  • Halásová E, Vašíček Z, Jansa L, Rehakova D, Skupien P (2012) Lower Cretaceous succession and biostratigraphy near overthrust plane of Silesian Nappe (Ostravice River Channel, Outer Western Carpathians, Czech Republic). Bull Geosci 87:1–25. https://doi.org/10.3140/bull.geosci.1326

    Article  Google Scholar 

  • Harangi S, Tonarini S, Vaselli O, Manetti P (2003) Geochemistry and petrogenesis of Early Cretaceous alkaline igneous rocks in Central Europe: implications for a long-lived EAR-type mantle component beneath Europe. Acta Geol Hung 46:77–94. https://doi.org/10.1556/AGeol.46.2003.1.6

    Article  CAS  Google Scholar 

  • Harlow GE (1994) Jadeitites, albitites and related rocks from the Motagua Fault Zone, Guatemala. J Metamorph Geol 12:49–68. https://doi.org/10.1111/j.1525-1314.1994.tb00003.x

    Article  ADS  CAS  Google Scholar 

  • Hovorka D, Spišiak J (1988) Mesozoic volcanism in the Western Carpathians. Veda, Bratislava, p 263 (in Slovak)

    Google Scholar 

  • Jebrak M, Šmejkal V, Albert D (1985) Rare earth and isotopic geochemistry of the fluorite-barite vein deposits from the Western Rouergue district (France). Econ Geol 80:2030–2034. https://doi.org/10.2113/gsecongeo.80.7.2030

    Article  CAS  Google Scholar 

  • Jedlička J (1988) Calcium strontianite from Třinec. Čas Min geol 33:71–75 (in Czech)

    Google Scholar 

  • Jiang SY, Wang RCh, Xu XS, Zhao KD (2005) Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems. Phys Chem Earth 30:1020–1029. https://doi.org/10.1016/j.pce.2004.11.004

    Article  ADS  Google Scholar 

  • Jirásek J, Dolníček Z, Matýsek D, Urubek T (2017) Genetic aspects of barite mineralization associated with teschenite in the Silesian Unit, Outer Western Carpathians, Czech Republic. Geol Carpath 68:119–129. https://doi.org/10.1515/geoca-2017-0010

    Article  ADS  CAS  Google Scholar 

  • Kropáč K, Dolníček Z, Buriánek D, Urubek T, Mašek V (2015) Carbonate inclusions in Lower Cretaceous picrites from the Hončova hůrka Hill (Czech Republic, Outer Western Carpathians): evidence for primary magmatic carbonates? Int J Earth Sci 104:1299–1315. https://doi.org/10.1007/s00531-015-1152-8

    Article  CAS  Google Scholar 

  • Kropáč K, Dolníček Z, Uher P, Urubek T (2017) Fluorcaphite from hydrothermally altered teschenite at Tichá, Outer Western Carpathians, Czech Republic: compositional variations and origin. Mineral Mag 81:1485–1501. https://doi.org/10.1180/minmag.2017.081.016

    Article  CAS  Google Scholar 

  • Kropáč K, Dolníček Z, Uher P, Buriánek D, Safai A, Urubek T (2020) Zirconian–niobian titanite and associated Zr-, Nb-, REE-rich accessory minerals: products of hydrothermal overprint of leucocratic teschenites (Silesian Unit, Outer Western Carpathians, Czech Republic). Geol Carpath 71:343–360. https://doi.org/10.31577/GeolCarp.71.4.4

    Article  Google Scholar 

  • Kudělásková J (1987) Petrology and geochemistry of selected rock types of teschenite association, outer western carpathians. Geol Carpath 38:545–573

    Google Scholar 

  • Kwak TAP, Abeysinghe PB (1987) Rare earth and uranium minerals present as daughter crystals in fluid inclusions, Mary Kathleen U-REE skarn, Queensland, Australia. Mineral Mag 51:665–670. https://doi.org/10.1180/minmag.1987.051.363.05

    Article  CAS  Google Scholar 

  • Kynický J, Xu C, Bajer A, Samec P, Kynická A (2009) New exploration of teschenite clan rocks: Sr and REE-rich fluorapatites. Geol Výzk Mor Slez 16:66–69 (in Czech)

    Google Scholar 

  • Lee SG, Lee DH, Kim Y, Chae BG, Kim WY, Woo NC (2003) Rare earth elements as indicators of groundwater environment changes in a fractured rock system: evidence from fracture – filling calcite. Appl Geoch 18:135–143. https://doi.org/10.1016/S0883-2927(02)00071-9

    Article  CAS  Google Scholar 

  • Lucińska-Anczkiewicz A, Villa IM, Anczkiewicz R, Ślaczka A (2002) 40Ar/39Ar dating of alkaline lamprophyres from the Polish Western Carpathians. Geol Carpath 53:45–52

    Google Scholar 

  • Marks AWM, Markl G (2017) A global review on agpaitic rocks. Earth-Sci Rev 173:229–258

    Article  ADS  CAS  Google Scholar 

  • Marosz K, Chmiel E (2007) New occurrences of strontium mineralization in Třinec area. Minerál 15:198–202

    Google Scholar 

  • Matýsek D (2013) Evidence of rare earth elements (REE) mobilization in teschenites of the Beskydy Mts. region. Acta Mus Moraviae Sci Geol 2:101–113 (in Czech)

    Google Scholar 

  • Matýsek D, Jirásek J (2016) Occurrences of slawsonite in rocks of the teschenite association in the Podbeskydí Piedmont area (Czech Republic) and their petrological significance. Can Mineral 54:1129–1146. https://doi.org/10.3749/canmin.1500101

    Article  CAS  Google Scholar 

  • Matýsek D, Jirásek K, Skupien P, Thomson SN (2018) The Žermanice sill: new insights into the mineralogy, petrology, age, and origin of the teschenite association rocks in the Western Carpathians, Czech Republic. Int J Earth Sci 107:2553–2574. https://doi.org/10.1007/s00531-018-1614-x

    Article  CAS  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral 21:169–200. https://doi.org/10.1515/9781501509032-010

    Article  CAS  Google Scholar 

  • Menčík E, Adamová M, Dvořák J, Dudek A, Jetel J, Jurková A, Hanzlíková E, Houša V, Peslová H, Rybářová L, Šmíd B, Šebesta J, Tyráček J, Vašíček Z (1983) Geology of the Moravskoslezské Beskydy Mts. and the Sub-Beskidian Highland. Ústř Úst geol Nakl Čs akad Věd, Praha, p 307 (in Czech)

    Google Scholar 

  • Migdisov A, Williams-Jones AE (2014) Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Mineral Deposita 49:987–997. https://doi.org/10.1007/s00126-014-0554-z

    Article  ADS  CAS  Google Scholar 

  • Minakawa T, Fukushima H, Nishio-Hamane D, Miura H (2008) Epidote-(Sr), CaSrAl2Fe3+(Si2O7)(SiO4)(OH), a new mineral from the Ananai mine, Kochi Prefecture, Japan. J Mineral Petrol Sci 103:400–406. https://doi.org/10.2465/jmps.071220

    Article  CAS  Google Scholar 

  • Miyajima H, Matsubara S, Miyawaki R, Hirokawa K (2003) Niigataite, CaSrAl3(Si2O7)(SiO4)O(OH): Sr-analogue of clinozoisite, a new member of the epidote group from the Itoigawa-Ohmi district, Niigata Prefecture, central Japan. J Mineral Petrol Sci 98:118–129. https://doi.org/10.2465/jmps.98.118

    Article  CAS  Google Scholar 

  • Monchoux P, Fontan F, De Parseval P, Martin RF, Wang RC (2006) Igneous albitite dikes in orogenic lherzolithes, Western Pyrenées, France: a possible source for corundum and alkali feldspar xenocrysts in basaltic terranes, I. Mineralogical associations. Can Mineral 44:817–842. https://doi.org/10.2113/gscanmin.44.4.817

    Article  CAS  Google Scholar 

  • Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Acta 66:1185–1196. https://doi.org/10.1016/S0016-7037(01)00849-3

    Article  ADS  CAS  Google Scholar 

  • Mottana A (1986) Blueschist-facies metamorphism of manganiferous cherts: a review of the alpine occurrences. In: Evans BW, Brown EH (eds) Blueschists and eclogites, vol 164. Mem Geol Soc Am, pp 267–299 https://doi.org/10.1130/MEM164-p267

  • Nagasaki A, Enami M (1998) Sr-bearing zoisite and epidote in ultra-high pressure (UHP) metamorphic rocks from the Su-Lu province, eastern China: an important Sr reservoir under UHP conditions. Am Mineral 83:240–247. https://doi.org/10.2138/am-1998-3-407

    Article  ADS  CAS  Google Scholar 

  • Narębski W (1990) Early rift stage in the evolution of western part of the Carpathians: geochemical evidence from limburgite and teschenite rock series. Geol Carpath 41:521–528

    Google Scholar 

  • Nemčok M, Nemčok J, Wojtaszek M, Ludhova L, Oszczypko N, Sercombe WJ, Cieszkowski M, Paul Z, Coward MP, Ślaczka A (2001) Reconstruction of Cretaceous rifts incorporated in the Outer West Carpathian wedge by balancing. Mar Petrol Geol 18:39–64. https://doi.org/10.1016/S0264-8172(00)00045-3

    Article  ADS  Google Scholar 

  • Pacák O (1926) Volcanic rocks at the northern foothill of the Moravské Beskydy Mts. Česká Akad Věd a Umění, Praha, p 232 (in Czech)

    Google Scholar 

  • Petrík I, Broska I, Lipka J, Siman P (1995) Granitoid allanite-(Ce) substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia). Geol Carpath 46:79–94

    Google Scholar 

  • Plašienka D, Grecula P, Putiš M, Kováč M, Hovorka D (1997) Evolution and structure of the Western Carpathians: an overview. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Miner Slovaca – Monograph, Bratislava, Slovakia, pp 1–24

    Google Scholar 

  • Pouchou J, Pichoir F (1985) PAP procedure for improved quantitative microanalysis. Microbeam Anal 20:104–105

    Google Scholar 

  • Rubie DC, Gunter WD (1983) The role of speciation in alkaline igneous fluids during fenite metasomatism. Contr Mineral Petrol 82:165–175

    Article  ADS  CAS  Google Scholar 

  • Safai A (2020) Distribution of selected high-field-strength elements in the rock of the teschenite association. MSc Thesis, Palacký University Olomouc (in Czech)

  • Salvi S, Williams-Jones AE (2006) Alteration, HFSE mineralization and hydrocarbon formation in peralkaline igneous systems: insights from the Strange Lake Pluton, Canada. Lithos 91:19–34. https://doi.org/10.1016/j.lithos.2006.03.040

    Article  ADS  CAS  Google Scholar 

  • Schuchová K (2016) Petrographic variability of teschenites from the site Bludovice near Nový Jičín. MSc thesis, Palacký University Olomouc (in Czech)

  • Skýpala J (2014) Strontium mineralization of the Těšín limestone (Silesian Unit, Outer Western Carpathians). BSc thesis, Palacký University Olomouc (in Czech)

  • Slavíček P (1985) New occurrence of strontianite in Těšín limestones near Třinec. Čas Min geol 30:213–214 (in Czech)

    ADS  Google Scholar 

  • Šmíd B (1978) The investigation of igneous rocks of the teschenite association. MS, Central Geological Survey, Prague, p 153 (in Czech)

    Google Scholar 

  • Smith DJ, Naden J, Jenkin GRT, Keith M (2017) Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems. Ore Geol Rev 89:772–779

    Article  Google Scholar 

  • Smulikowski K (1930) Les roches éruptives de la zone subbeskidique en Silésie et Moravie. Kosmos 54:749–850 (in French)

    Google Scholar 

  • Spišiak J, Hovorka D (1997) Petrology of the Western Carpathians Cretaceous primitive alkaline volcanics. Geol Carpath 48:113–121 (in Slovak)

    Google Scholar 

  • Spišiak J, Mikuš T (2008) Ba- and Sr-rich phases in Cretaceous alkaline volcanites of the Outer Western Carpathians. Geochémia 2008 proceedings, ŠGÚDŠ Bratislava 135–137 (in Slovak)

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constant in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362. https://doi.org/10.1016/0012-821X(77)90060-7

    Article  ADS  CAS  Google Scholar 

  • Stráník Z, Menčík E, Eliáš M, Adámek J (1993) Flysch belt of the West Carpathians, autochthonous Mesozoic and Paleogene in Moravia and Silesia. In: Přichystal A, Obstová V, Suk M (eds) Geology of Moravia and Silesia. Mor zem muz. PřF MU, Brno, pp 107–122 (in Czech)

    Google Scholar 

  • Szopa K, Włodyka R, Chew D (2014) LA-ICP-MS U-Pb apatite dating of lower cretaceous rocks from teschenite-picrite association in the Silesian Unit (southern Poland). Geol Carpath 65:273–284. https://doi.org/10.2478/geoca-2014-0018

    Article  CAS  Google Scholar 

  • Tanaka T, Hamane D (2016) Epidote-(Sr) from Shiromaru mine, Tokyo prefecture, Japan. (conference presentation R1-P14)

  • Urubek T, Dolníček Z, Kropáč K, Lehotský T (2013) Fluid inclusions and chemical composition of analcimes from Řepiště site (Outer Western Carpathians). Geol Výzk Mor Slez 20:107–111 (in Czech)

    Google Scholar 

  • Urubek T, Dolníček Z, Kropáč K (2014) Genesis of syntectonic hydrothermal veins in the igneous rock of teschenite association (Outer Western Carpathians, Czech Republic): growth mechanism and origin of fluids. Geol Carpath 65(6):419–431. https://doi.org/10.1515/geoca-2015-0003

    Article  ADS  CAS  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Bruhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88. https://doi.org/10.1016/S0009-2541(99)00081-9

    Article  ADS  CAS  Google Scholar 

  • Vlach SRF (2012) Micro-structural and compositional variations of hydrothermal epidote-group minerals from a peralkaline granite, Corupá Pluton, Graciosa Province, South Brazil, and their petrological implications. An Acad Bras Ciênc 84(2):405–423. https://doi.org/10.1590/S0001-37652012005000024

    Article  Google Scholar 

  • Warr LN (2021) IMA-CNMNC approved mineral symbols. Mineral Mag 85:291–320

    Article  CAS  Google Scholar 

  • Włodyka R, Karwowski Ł (2004) The alkaline magmatism from the Polish Western Carpathians. Pol Tow Miner Pr Spec 24:23–31

    Google Scholar 

  • Wood SA, Ricketts A (2000) Allanite-(Ce) from Eocene Casto Granite, Idaho: response to hydrothermal alteration. Can Mineral 38:81–100. https://doi.org/10.2113/gscanmin.38.1.81

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Haifler and P. Gadas (Masaryk University in Brno) for performing part of the electron microprobe analyses and J. Kapusta (Palacký University in Olomouc) for taking some BSE images. This work was supported by the Palacký University Olomouc (IGA_PrF_2018_025 and IGA_PrF_2019_017) to K.K., by the Ministry of the Culture of the Czech Republic (DKRVO 2019–2023/1.II.e, 00023272) to Z.D., by the Ministry of the Environment of the Czech Republic (DKRVO/ČGS/2018–2022) to D.B. and by the EXPRO project of the Czech Science Foundation 810 (No.19-29124X) to T.U. We also gratefully thank to both reviewers (B. Budzyń and an anonymous reviewer) for constructive and helpful comments, which improved the clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.K. and Z.D. conceived, designed and carried out the research and wrote the main manuscript text. K.K. drafted the manuscript. P.U., D.B., and T.U. contributed to data interpretations, discussion, and revision of the manuscript.

Corresponding author

Correspondence to Kamil Kropáč.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Editorial handling: C. Hauzenberger.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kropáč, K., Dolníček, Z., Uher, P. et al. Crystal chemistry and origin of epidote-(Sr) in alkaline rocks of the teschenite association (Silesian Unit, Outer Western Carpathians, Czech Republic). Miner Petrol 118, 55–70 (2024). https://doi.org/10.1007/s00710-023-00847-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-023-00847-w

Keywords

Navigation