Skip to main content
Log in

Synthetic Transformations of Higher Terpenoids. 43. Synthesis and Cytotoxic Properties of New Lambertianic Acid Derivatives at the Carboxylic Group

  • Published:
Chemistry of Natural Compounds Aims and scope

Lambertianic acid was selectively transformed at the carboxylic group. Synthetic methods for natural labdanoids, i.e., lambertianic acid methyl ester and lambertianol, were proposed. New N-containing diterpenoid derivatives with alkyl(aryl)amide, dialkylamide, hydrazide, N-hydroxycarbamoyl, and nitrile groups in the C-4 position of the labdane skeleton were synthesized via reactions of lambertianic acid chloride with aliphatic and aromatic amines, amino acids, hydrazine, and hydroxylamine. Compounds with higher cytotoxicity than lambertianic acid against MCF-7, HeLa, and HepG2 (MTT assay) human tumor cell lines were obtained. The IC50 value of the most active lambertianic acid N-hydroxycarbamoyl derivative was 15 μM (selectivity index >7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Gromova, Yu. V. Kharitonov, T. V. Rybalova, S. A. Borisov, T. G. Tolstikova, and E. E. Shults, Chem. Nat. Compd., 59, 296 (2023).

    Article  CAS  Google Scholar 

  2. E. E. Shul′ts, M. E. Mironov, and Yu. V. Kharitonov, Chem. Nat. Compd., 50, 2 (2014).

    Article  Google Scholar 

  3. C. Forzato and P. Nitti, Plants, 11, 2240 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. G. A. Tolstikov, T. G. Tolstikova, E. E. Shul′ts, S. E. Tolstikov, and M. V. Khvostov, Resin Acids of Russian Conifers. Chemistry, Pharmacology, B. A. Trofimov (ed.), Geo, Novosibirsk, 2011, 395 pp.

  5. Yu. V. Kharitonov, E. E. Shul′ts, M. M. Shakirov, M. A. Pokrovskii, A. G. Pokrovskii, and G. A. Tolstikov, Bioorg. Khim., 38, 127 (2012) [Y. V. Kharitonov, E. E. Shul′ts, M. M. Shakirov, M. A. Pokrovsky, A. G. Pokrovsky, and G. A. Tolstikov, Russ. J. Bioorg. Chem., 38, 107 (2012)].

  6. Yu. V. Kharitonov, E. E. Shul′ts, M. M. Shakirov, M. A. Pokrovskii, A. G. Pokrovskii, and G. A. Tolstikov, Izv. Akad. Nauk, Ser. Khim., 62, 2046 (2013) [Y. V. Kharitonov, E. E. Shul′ts, M. M. Shakirov, M. A. Pokrovskii, A. G. Pokrovskii, and G. A. Tolstikov, Russ. Chem. Bull. (Int. Ed.), 62, 2046 (2013)].

  7. M. E. Mironov, M. A. Pokrovsky, Y. V. Kharitonov, M. M. Shakirov, A. G. Pokrovsky, and E. E. Shults, ChemistrySelect, 1, 417 (2016).

    Article  CAS  Google Scholar 

  8. Yu. V. Kharitonov, M. M. Shakirov, M. A. Pokrovskii, A. G. Pokrovskii, and E. E. Shul′ts, Chem. Nat. Compd., 53, 77 (2017).

    Article  CAS  Google Scholar 

  9. E. Bombardelli, A. Lolla, R. Pace, R. Willmann, and M. V. Piretti, Planta Med., 58, 590 (1992).

    Article  Google Scholar 

  10. Y. V. Kharitonov, E. E. Shul′ts, T. V. Rybalova, A. V. Pavlova, and T. G. Tolstikova, Chem. Nat. Compd., 57, 879 (2021).

    Article  CAS  Google Scholar 

  11. E. E. Shul′ts, Yu. V. Kharitonov, E. A. Morozova, M. K. Fomina, and T. G. Tolstikova, RU Pat. No. 2, 534, 987, Dec. 10, 2014; Byull., No. 34 (2014).

  12. Yu. V. Kharitonov, E. E. Shul′ts, I. V. Sorokina, L. V. Sazonova, T. G. Tolstikova, A. G. Pokrovskii, and M. A. Pokrovskii, RU Pat. 2,654,201, May 17, 2018; Byull., No. 14 (2018).

  13. T. G. Tolstikova, I. V. Sorokina, N. A. Zhukova, E. A. Morozova, Yu. V. Kharitonov, M. E. Mironov, S. A. Popov, and E. E. Shul′ts, Khim. Interesakh Ustoich. Razvit., 26, 329 (2018) [T. G. Tolstikova, I. V. Sorokina, N. A. Zhukova, E. A. Morozova, Yu. V. Kharitonov, M. E. Mironov, S. A. Popov, and E. E. Shults, Chem. Sustainable Dev., 305 (2018)].

  14. T. G. Tolstikova, N. V. Sorokina, M. P. Dolgikh, S. V. Chernov, Yu. V. Kharitonov, E. E. Shul′ts, and G. A. Tolstikov, Khim.-farm. Zh., 39, 46 (2004).

    Google Scholar 

  15. R. A. Bell and M. Fetizov, Can. J. Chem., 54, 141 (1976).

    Article  CAS  Google Scholar 

  16. D. A. Klok, M. M. Shakirov, V. V. Grishko, and V. A. Raldugin, Russ. Chem. Bull., 44, 2412 (1995).

    Article  Google Scholar 

  17. F. Snatzke and P. Wolff, Bull. Chem. Soc. Ethiop., 3, 135 (1989).

    CAS  Google Scholar 

  18. J. K. Wilson, J. M. Sargent, A. W. Elgie, J. G. Hill, and C. G. Taylor, Br. J. Cancer, 62, 189 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank staff of the Khimiya Service Center for Common Use, SB, RAS, for the spectral and analytical studies. The work was financially supported by a grant from the Russian Foundation for Basic Research and the Novosibirsk Region administration (Project No. 19-43-540003) and in the framework of a State Task (Projects Nos. 122040400030-8 and 122040400038-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Shults.

Additional information

For No. 42, see the literature [1].

Translated from Khimiya Prirodnykh Soedinenii, No. 6, November–December, 2023, pp. 936–947.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharitonov, Y., Antipova, V.I., Marenina, M.K. et al. Synthetic Transformations of Higher Terpenoids. 43. Synthesis and Cytotoxic Properties of New Lambertianic Acid Derivatives at the Carboxylic Group. Chem Nat Compd 59, 1109–1121 (2023). https://doi.org/10.1007/s10600-023-04206-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10600-023-04206-1

Keywords

Navigation