Skip to main content

Advertisement

Log in

Mapping hydrothermal alteration zones with short wavelength infrared (SWIR) spectra and magnetic susceptibility at the Pulang porphyry Cu-Au deposit, Yunnan, SW China

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Delineation of hydrothermal alteration zoning is important for exploration vectoring toward mineralization centers in porphyry systems, and shortwave infrared (SWIR) spectroscopy is widely used to map hydrothermal minerals distribution for porphyry Cu exploration. However, the SWIR method cannot effectively detect anhydrous alteration minerals (e.g., K-feldspar) in the potassic zone. Magnetite can be formed by potassic alteration and destroyed by phyllic (quartz-sericite-pyrite) alteration. The relative intensity of these two alteration types can be quantified by magnetic susceptibility. Here, we integrate the SWIR and magnetic susceptibility measurements to map hydrothermal alteration zones at the Pulang porphyry Cu-Au deposit in northwestern Yunnan, one of the largest porphyry deposits in the SW China-mainland SE Asia region. White mica, chlorite, and montmorillonite + kaolinite were identified in ~ 60%, ~ 30%, and ~ 15% of the analyzed samples from the Pulang deposit, respectively. Volumetric bulk magnetic susceptibility (Kbulk) values are high in the potassic-altered rocks, but low in phyllic-altered rocks. Using white mica as a proxy for sericite alteration, white mica-chlorite assemblage for chlorite-sericite alteration, chlorite-epidote-actinolite assemblage for propylitic alteration, montmorillonite-kaolinite-dickite assemblage for argillic alteration, and Kbulk (> 0.5 × 10–3 SI) for potassic alteration, we delineate the alteration zoning at Pulang. From the causative porphyry center outward, four alteration zones are delineated (potassic → chlorite-sericite → sericite → argillic). The ore-distal propylitic alteration was developed both in the shallow and deeper levels of the hydrothermal system, resembling typical porphyry-style alteration zoning patterns. Our work shows that high Kbulk value is a useful vector toward Cu mineralization at Pulang, whereas illite crystallinity (SWIR-IC), white mica Al–OH spectral absorption peak, and chlorite Fe-OH spectral absorption peak are less effective. We highlight that magnetic susceptibility measurement is an effective alteration-mapping method when mineralization is developed in the potassic zone (with largely aspectral minerals such as quartz, K-feldspar, and magnetite), while SWIR scalars are more useful when mineralization is developed in the phyllic and/or propylitic zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Astudillo N, Roperch P, Townley B, Arriagada C, Maksaev V (2008) Importance of small-block rotations in damage zones along transcurrent faults. Evidence from the Chuquicamata open pit. Northern Chile Tectonophysics 450:1–20

    Article  ADS  Google Scholar 

  • Astudillo N, Roperch P, Townley B, Arriagada C, Chauvin A (2010) Magnetic polarity zonation within the El Teniente copper–molybdenum porphyry deposit, central Chile. Miner Deposita 45:23–41

    Article  CAS  ADS  Google Scholar 

  • Beane RE, Bodnar RJ (1995) Hydrothermal fluids and hydrothermal alteration in porphyry copper deposits, In: Pierce FW, Bohm JG (eds.) Porphyry copper deposits of the American Cordillera, 20: Tucson, Arizona Geological Society Digest 83–93

  • Berman M, Bischof L, Lagerstrom R, Gu Y, Huntington J, Mason P, Green A (2017) A comparison between three sparse unmixing algorithms using a large library of shortwave infrared mineral spectra. IEEE Trans Geosci Remote Sens 1–23

  • Bishop JL, Lane MD, Dyar MD, Brown AJ (2008) Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas. Clay Miner 43:35–54

    Article  CAS  ADS  Google Scholar 

  • Brimhall GH, Agee C, Stoffregen R (1985) The hydrothermal conversion of hornblende to biotite. Can Mineral 23:369–379

    CAS  Google Scholar 

  • Cao K, Yang ZM, Mavrogenes J, White NC, Xu JF, Li Y, Li WK (2019) Geology and genesis of the giant Pulang porphyry Cu-Au district, Yunnan, southwest China. Econ Geol 114:275–301

    Article  Google Scholar 

  • Chambefort I, Lewis B, Simpson MP, Bignall G, Rae AJ, Ganefianto N (2017) Ngatamariki geothermal system: Magmatic to epithermal transition in the Taupo Volcanic Zone, New Zealand. Econ Geol 112:319–346

    Article  Google Scholar 

  • Chang EZ (2000) Geology and tectonics of the Songpan-Ganzi Fold Belt, southwestern China. Int Geol Rev 42:813–831

    Article  Google Scholar 

  • Chang ZS, Yang ZM (2012) Evaluation of inter-instrument variations among short wavelength infrared (SWIR) devices. Econ Geol 107:1479–1488

    Article  CAS  Google Scholar 

  • Chang ZS, Hedenquist JW, White NC, Cooke DR, Roach M, Deyell CL, Garcia J, Gemmell JB, McKnight S, Cuison AL (2011) Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Econ Geol 106:1365–1398

    Article  CAS  Google Scholar 

  • Chen Q, Zhao ZF, Zhou JX, Zeng M, Xia JS, Sun T, Zhao X (2021) New insights into the Pulang porphyry copper deposit in Southwest China: Indication of alteration minerals detected using ASTER and WorldView-3 data. Remote Sensing 13:2798

    Article  ADS  Google Scholar 

  • Clark DA (2014) Magnetic effects of hydrothermal alteration in porphyry copper and iron-oxide copper–gold systems: A review. Tectonophysics 624–625:46–65

    Article  ADS  Google Scholar 

  • Clark DA, Schmidt PW (2001) Petrophysical properties of the Goonumbla volcanic complex, NSW: Implications for magnetic and gravity signatures of porphyry Cu-Au mineralisation. ASEG Extended Abstracts 2001:1–4

    Article  Google Scholar 

  • Clark DA, French DH, Lackie MA, Schmidt PW (1992) Magnetic petrology: Application of integrated rock magnetic and petrological techniques to geological interpretation of magnetic surveys. Explor Geophys 23:65–68

    Article  ADS  Google Scholar 

  • Cooke DR, Hollings P, Wilkinson JJ, Tosdal RM (2014) Geochemistry of porphyry deposits. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 357–381

    Chapter  Google Scholar 

  • Cooke DR, Agnew P, Hollings P, Baker M, Chang Z, Wilkinson JJ, Ahmed A, White NC, Zhang L, Thompson J, Gemmell JB, Danyushevsky L, Chen H (2020) Recent advances in the application of mineral chemistry to exploration for porphyry copper–gold–molybdenum deposits: detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration. Geochem: Explor Environ Anal 20:176–188

    CAS  Google Scholar 

  • Cooke DR, Agnew P, Hollings P, Baker M, Chang ZS, Wilkinson JJ, White NC, Zhang LJ, Thomas J, Gemmell JB, Fox N, Chen HY, Wilkinson CC (2017) Porphyry indicator minerals (PIMS) and porphyry vectoring and fertility tools (PVFTS) – Indicators of Mineralization Styles and Recorders of Hypogene Geochemical Dispersion Halos, Proceedings of Exploration 17. Sixth Decennial International Conference on Mineral Exploration: 457–470

  • Doublier MP, Roache T, Potel S (2010) Short-wavelength infrared spectroscopy: A new petrological tool in low-grade to very low-grade pelites. Geology 38:1031–1034

    Article  ADS  Google Scholar 

  • Duke EF (1994) Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing. Geology 22:621–624

    Article  CAS  ADS  Google Scholar 

  • Fan YH, Li WC (2006) Geological characteristics of the Pulang porphyry copper deposit, Yunnan: Geology in China 33: 352–362 (in Chinese with English abs.)

  • Frey M (1987) Very low-grade metamorphism of clastic sedimentary rocks, In: Frey M (ed.) Low Temperature Metamorphism: Glasgow, Blackie and Son 9–58

  • Frost RL, Johansson U (1998) Combination bands in the infrared spectroscopy of Kaolins—A drift spectroscopic study. Clays Clay Miner 46:466–477

    Article  CAS  ADS  Google Scholar 

  • Gaffey SJ (1986) Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns); calcite, aragonite, and dolomite. Am Miner 71:151–162

    CAS  Google Scholar 

  • Guo N, Tomas C, Tang JX, Tong QX (2017) Mapping white mica alteration associated with the Jiama porphyry-skarn Cu deposit, Central Tibet using field SWIR spectrometry. Ore Geol Rev 108:147–157

    Article  Google Scholar 

  • Guo JH, Leng CB, Zhang XC, Zafar T, Chen WT, Zhang W, Tian ZD, Tian F, Lai CK (2020) Textural and chemical variations of magnetite from porphyry Cu-Au and Cu skarn deposits in the Zhongdian region, northwestern Yunnan SW, China. Ore Geol Rev 116:103245

    Article  Google Scholar 

  • Guo DX, Liu X, Zhang HL, Zhang ZG (2021) The infrared spectroscopy characteristics of alteration and mineralizationin the porphyry copper deposit in Pulang, Yunnan Province. Rock Miner Anal 40: 698–709 (in Chinese with English abs.)

  • Halley S, Dilles JH, Tosdal RM (2015) Footprints: hydrothermal alteration and geochemical dispersion around porphyry copper deposits. Soc Econ Geol Newsl 100:12–17

    Google Scholar 

  • Han J, Chu G, Chen H, Hollings P, Sun S, Chen M (2018) Hydrothermal alteration and short wavelength infrared (SWIR) characteristics of the Tongshankou porphyry-skarn Cu-Mo deposit, Yangtze craton, Eastern China. Ore Geol Rev 101:143–164

  • Harraden CL, McNulty BA, Gregory MJ, Lang JR (2013) Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble porphyry copper-gold-molybdenum deposit, Iliamna, Alaska. Econ Geol 108:483–494

    Article  CAS  Google Scholar 

  • Herrmann W, Blake M, Doyle M, Huston D, Kamprad J, Merry N, Pontual S (2001) Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and western Tharsis, Tasmania, and Highway-Reward, Queensland. Econ Geol 96:939–955

    CAS  Google Scholar 

  • Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet Sci Lett 220:139–155

    Article  CAS  ADS  Google Scholar 

  • Hou ZQ, Mo XX (1991) A tectono-magmatic evolution of Yidun island arc in Sanjiang region. Contribution to the Geology of the Qunghai-Xizang (Tibet) Plateau 21:153–165 (in Chinese with English abs.)

  • Jones S, Herrmann W, Gemmell JB (2005) Short wavelength infrared spectral characteristics of the HW Horizon: Implications for exploration in the Myra Falls volcanic-hosted massive sulfide camp, Vancouver Island, British Columbia, Canada. Econ Geol 100:273–294

    Article  CAS  Google Scholar 

  • King TVV, Clark RN (1989) Spectral characteristics of chlorites and Mg-serpentines using high-resolution reflectance spectroscopy. J Geophys Res: Solid Earth 94:13997–14008

    Article  CAS  Google Scholar 

  • Kodama KP, Hinnov LA (2014) Rock magnetism, In: Kodama KP, Hinnov LA (eds.) Rock magnetic cyclostratigraphy 10–34

  • Kunming Prospecting Design Institute of China Nonferrous Metals Industry (KPDI) (2012) Exploration report of Pulang copper deposit, Yunnan Diqing Nonferrous Metal Co. Ltd

  • Laakso K, Peter JM, Rivard B, White HP (2016) Short-wave infrared spectral and geochemical characteristics of hydrothermal alteration at the Archean Izok Lake Zn-Cu-Pb-Ag volcanogenic massive sulfide deposit, Nunavut, Canada: Application in exploration target vectoring. Econ Geol 111:1223–1239

    Article  Google Scholar 

  • Lang JR, Gregory MJ, Rebagliati M, Payne JG, Oliver JL, Roberts K (2013) Geology and magmatic-hydrothermal evolution of the giant Pebble porphyry copper-gold-molybdenum deposit, southwest Alaska. Econ Geol 108:437–462

    Article  CAS  Google Scholar 

  • Leng CB, Zhang XC, Hu RZ, Wang SX, Zhong H, Wang WQ, Bi XW (2012) Zircon U-Pb and molybdenite Re–Os geochronology and Sr–Nd–Pb–Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China. J Asian Earth Sci 60:31–48

    Article  ADS  Google Scholar 

  • Leng CB, Huang QY, Zhang XC, Wang SX, Zhong H, Hu RZ, Bi XW, Zhu JJ, Wang XS (2014) Petrogenesis of the late Triassic volcanic rocks in the southern Yidun arc, SW China: Constraints from the geochronology, geochemistry, and Sr–Nd–Pb–Hf isotopes. Lithos 190–191:363–382

    Article  ADS  Google Scholar 

  • Leng CB, Cooke DR, Hou ZQ, Evans NJ, Zhang XC, Chen WT, Danišík M, McInnes BIA, Yang JH (2018) Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating. Econ Geol 113:1077–1092

    Article  Google Scholar 

  • Leng CB, Gao JF, Chen WT, Zhang XC, Tian ZD, Guo JH (2018) Platinum-group elements, zircon Hf-O isotopes, and mineralogical constraints on magmatic evolution of the Pulang porphyry Cu-Au system, SW China. Gondwana Res 62:163–177

    Article  CAS  ADS  Google Scholar 

  • Li WC, Zeng PS, Hou ZQ, White NC (2011) The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province, southwest China. Econ Geol 106:79–92

    Article  CAS  Google Scholar 

  • Li WK, Yang ZM, Cao K, Lu YJ, Sun MY (2019) Redox-controlled generation of the giant porphyry Cu–Au deposit at Pulang, southwest China. Contrib Mineral Petrol 174:12

    Article  ADS  Google Scholar 

  • Lian CY, Zhang G, Yuan CH (2005) Application of SWIR reflectance spectroscopy to Pulang porphyry copper ore district‚Yunnan Province. Miner Depos 24: 621–637 (in Chinese with English abs.)

  • Liang HY, Sun WD, Su WC, Zartman RE (2009) Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Econ Geol 104:587–596

    Article  CAS  Google Scholar 

  • Lowell JD, Guilbert JM (1970) Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ Geol 65:373–408

    Article  Google Scholar 

  • Lypaczewski P, Rivard B (2018) Estimating the Mg# and AlVI content of biotite and chlorite from shortwave infrared reflectance spectroscopy: Predictive equations and recommendations for their use. Int J Appl Earth Obs Geoinf 68:116–126

    Google Scholar 

  • Neal LC, Wilkinson JJ, Mason PJ, Chang Z (2018) Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits. J Geochem Explor 184:179–198

    Article  CAS  Google Scholar 

  • Purucker ME, Clark DA (2011) Mapping and interpretation of the lithospheric magnetic field. In: Mandea M, Korte M (eds) Geomagnetic observations and models: Dordrecht. Springer, Netherlands, pp 311–337

    Chapter  Google Scholar 

  • Reed M (1997) Hydrothermal alteration and its relationships to ore fluid composition, In: Barnes KL (ed.) Geochemistry of hydrothermal ore deposits, Wiley: 303–366

  • Reid AJ, Wilson CJL, Liu S (2005) Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau. J Struct Geol 27:119–137

    Article  ADS  Google Scholar 

  • Reid A, Wilson CJL, Shun L, Pearson N, Belousova E (2007) Mesozoic plutons of the Yidun Arc, SW China: U/Pb geochronology and Hf isotopic signature. Ore Geol Rev 31:88–106

    Article  Google Scholar 

  • Richards JP (2003) Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ Geol 98:1515–1533

    Article  CAS  Google Scholar 

  • Riveros K, Veloso E, Campos E, Menzies A, Véliz W (2014) Magnetic properties related to hydrothermal alteration processes at the Escondida porphyry copper deposit, northern Chile. Miner Deposita 49:693–707

    Article  CAS  ADS  Google Scholar 

  • Rochette P, Jackson M, Aubourg C (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev Geophys 30:209–226

    Article  ADS  Google Scholar 

  • Ross PS, Bourke A, Schnitzler N, Conly A (2019) Exploration vectors from near infrared spectrometry near the McLeod volcanogenic massive sulfide deposit, Matagami district, Québec. Econ Geol 114:613–638

    Article  Google Scholar 

  • Rusk BG, Reed MH, Dilles JH, Klemm LM, Heinrich CA (2004) Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper–molybdenum deposit at Butte, MT. Chem Geol 210:173–199

    Article  CAS  ADS  Google Scholar 

  • Seedorff E, Dilles JH, Proffett JM Jr, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Barton MD, Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (2005) Porphyry deposits: Characteristics and origin of hypogene features. Econ Geol 100 Anniv Volume 100: 251–298

  • Shah AK, Bedrosian PA, Anderson ED, Kelley KD, Lang J (2013) Integrated geophysical imaging of a concealed mineral deposit: A case study of the world-class Pebble porphyry deposit in southwestern Alaska. Geophysics 78:B317–B328

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  CAS  Google Scholar 

  • Tappert M, Rivard B, Giles D, Tappert R, Mauger A (2011) Automated drill core logging using visible and near-infrared reflectance spectroscopy: a case study from the Olympic Dam IOCG deposit, South Australia. Econ Geol 106:289–296

    Article  CAS  Google Scholar 

  • Tappert MC, Rivard B, Giles D, Tappert R, Mauger A (2013) The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geol Rev 53:26–38

    Article  Google Scholar 

  • Thompson AJB, Hauff PL, Robitaille AJ (1999) Alteration mapping in exploration: Application of short-wave infrared (SWIR) spectroscopy. SEG Newsletter 39:15–27

    Google Scholar 

  • Thompson AJB, Scott K, Huntington J, Yang K, Bedell R, Crósta AP, Grunsky E (2009) Mapping mineralogy with reflectance spectroscopy: Examples from volcanogenic massive sulfide deposits. Rev Econ Geol 16:25–40

    Google Scholar 

  • Tian ZD, Leng CB, Zhang XC (2020) Provenance and tectonic setting of the Neoproterozoic meta-sedimentary rocks in SE Tibetan Plateau: Implications for tectonic affinity of the Yidun terrane. Precambr Res 344:105736

    Article  CAS  Google Scholar 

  • Tian ZD, Leng CB, Zhang XC, Tian F, Lai CK (2022) Late Neoproterozoic-early Paleozoic tectonic evolution and paleogeographic reconstruction of the eastern Tibetan Plateau: A perspective from detrital zircon U-Pb-Hf isotopic evidence. Precambr Res 377:106738

    Article  CAS  Google Scholar 

  • Tian F, Leng CB, Zhang XC, Tian ZD, Zhang W, Guo JH (2019) Application of short⁃wave infrared spectroscopy in Gangjiang porphyry Cu⁃Mo deposit in Nimu ore field, Tibet. Earth Sci-J China Univ Geosci 44:2143–2154 (in Chinese with English abs.)

  • Wang R, Cudahy T, Laukamp C, Walshe JL, Bath A, Mei Y, Young C, Roache TJ, Jenkins A, Roberts M, Barker A, Laird J (2017) White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits, western Australia. Econ Geol 112:1153–1176

    Article  Google Scholar 

  • Wang L, Percival JB, Hedenquist JW, Hattori K, Qin K (2021) Alteration mineralogy of the Zhengguang epithermal Au-Zn Deposit, northeast China: Interpretation of shortwave infrared analyses during mineral exploration and assessment. Econ Geol 116:389–406

    Article  Google Scholar 

  • Wang SX, Zhang XC, Leng CB, Qin CJ, Ma DY, Wang WQ (2008) Zircon SHRIMP U-Pb dating of the Pulang porphyry copper deposit, northwestern Yunnan, China: The ore-forming time limitation and geological significance. Acta Petrologica Sinica 24: 2313–2321 (in Chinese with English abs.)

  • Yang K, Huntington JF, Browne PRL, Ma C (2000) An infrared spectral reflectance study of hydrothermal alteration minerals from the TeMihi sector of the Wairakei geothermal system. New Zealand Geothermics 29:377392

    Google Scholar 

  • Yang K, Browne PRL, Huntington JF, Walshe JL (2001) Characterising the hydrothermal alteration of the broadlands-ohaaki geothermal system, New Zealand, using short-wave infrared spectroscopy. J Volcanol Geoth Res 106:53–65

    Article  CAS  ADS  Google Scholar 

  • Yang K, Lian C, Huntington JF, Peng Q, Wang Q (2005) Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu–Au deposit, Xinjiang, China. Miner Deposita 40:324–336

    Article  CAS  ADS  Google Scholar 

  • Yang K, Huntington J, Gemmell B, Scott KM (2011) Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infrared reflectance spectroscopy. J Geochem Explor 108:143–156

    Article  CAS  Google Scholar 

  • Yang ZM, Hou ZQ, Yang ZS, Qu HC, Li ZQ, Liu YF (2012) Application of short wavelength infrared (SWIR) technique in exploration of poorly eroded porphyry Cu district: A case study of Niancun ore district. Tibet Mineral Deposits 31:699–717

    CAS  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Article  CAS  ADS  Google Scholar 

  • Zeng PS, Li WC, Wang HP, Li H (2006) The Indosinian Pulang superlarge porphyry copper deposit in Yunnan, China: Petrology and chronology. Acta Petrologica Sinica 22: 989–1000 (in Chinese with English abs.)

  • Zhao ZF, Zhou JX, Lu YX, Chen Q, Cao XM, He XH, Fu XH, Zeng SH, Feng WJ (2021) Mapping alteration minerals in the Pulang porphyry copper ore district, SW China, using ASTER and WorldView-3 data: Implications for exploration targeting. Ore Geol Rev 134:104171

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate Xilian Chen, Kaixuan Li, Taoliang Chen, Jinwei Mao, and Feng Liang for assistance during the field investigations. We also appreciate the Yunnan Diqing Nonferrous Metals Co. Ltd. for funding this project. Kai Yang is thanked for the insightful discussion during the analyses of SWIR data. Suggestions by two anonymous reviewers, associate editor Rui Wang and editor Karen Kelley greatly improved the manuscript.

Funding

This study was financially supported by the National Natural Science Foundation of China (NSFC) (42022021, 92062101, and 42173026), the Second Tibetan Plateau Scientific Expedition and Research project (2021QZKK0301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Biao Leng or Da-Zhao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Editorial handling: R. Wang

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 702 KB)

Supplementary file2 (DOCX 474 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, CB., Wang, DZ., Yu, HJ. et al. Mapping hydrothermal alteration zones with short wavelength infrared (SWIR) spectra and magnetic susceptibility at the Pulang porphyry Cu-Au deposit, Yunnan, SW China. Miner Deposita 59, 699–716 (2024). https://doi.org/10.1007/s00126-023-01229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-023-01229-0

Keywords

Navigation