Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Opportunities with calcium Grignard reagents and other heavy alkaline-earth organometallics

Abstract

More than a century old, magnesium Grignard reagents remain essential to the toolbox of organic chemists. Although similar reagents with the neighbouring group 2 metal Ca have been explored, the considerably higher polarity and reactivity of the Ca–C bond result in undesired decomposition pathways. Ca Grignard reagents have found academic interest but have never fully developed into an established synthetic tool. Recent research activities, however, provide facile access to these highly reactive organocalcium species, including in situ preparation and ball milling approaches to tackle the challenge of controlling their extreme sensitivity. Heavier Grignard reagents are not just more reactive but profit from unique chemical transformations. Insight into the transition metal-like properties of Ca, Sr and Ba is only just emerging. Considering the rapidly developing field of alkaline-earth metal-mediated catalysis, heavy Grignard reagents will probably have a bright future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ether cleavage.
Fig. 2: Syntheses and structures of Ca Grignard reagents.
Fig. 3: Synthesis of Ca reagents and the Barbier reaction.
Fig. 4: Syntheses and reactivity of low-valent Mg complexes and Grignard reagents.
Fig. 5: Activation of π systems by Ae2+ metal cations.
Fig. 6: Experimental observations hinting to d-orbital participation in heavier Ae metal chemistry.

Similar content being viewed by others

References

  1. Frankland, E. Ueber die Isolirung der organischen Radicale. Justus Liebigs Ann. Chem. 71, 171–213 (1849).

    Article  Google Scholar 

  2. Hallwachs, W. & Schafarik, A. Ueber die Verbindungen der Erdmetalle mit organischen Radicalen. Justus Liebigs Ann. Chem. 109, 206–209 (1859).

    Article  Google Scholar 

  3. Grignard, V. Sur quelques nouvelles combinaisons organométalliques du magnèsium et leur application à des synthèses d’alcools et d’hydrocarbures. C. R. Hebd. Séances Acad. Sci. 130, 1322–1324 (1900).

    CAS  Google Scholar 

  4. Cahours, A. Recherches sur les radicaux organométalliques. Ann. Chim. Phys. 58, 5–82 (1860).

    Google Scholar 

  5. Durand, J.-F. Préparation directe des composés organogluciques mixtes. C. R. Hebd. Séances Acad. Sci. 182, 1162–1164 (1926).

    CAS  Google Scholar 

  6. Gilman, H. & Schulze, F. Organoberyllium halides. J. Am. Chem. Soc. 49, 2904–2908 (1927).

    Article  CAS  Google Scholar 

  7. Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. K. Criticality of metals and metalloids. Proc. Natl Acad. Sci. USA 112, 4257–4262 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun, X. Supply chain risks of critical metals: sources, propagation, and responses. Front. Energy Res. 10, 957884 (2022).

    Article  Google Scholar 

  9. Asako, S., Takahashi, I., Nakajima, H., Ilies, L. & Takai, K. Halogen–sodium exchange enables efficient access to organosodium compounds. Commun. Chem. 4, 76 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tortajada, A., Anderson, D. E. & Hevia, E. Gram-scale synthesis, isolation and characterisation of sodium organometallics: nBuNa and NaTMP. Helv. Chim. Acta 105, e202200060 (2022).

    Article  CAS  Google Scholar 

  11. Wilson, A. S. S., Hill, M. S., Mahon, M. F., Dinoi, C. & Maron, L. Organocalcium-mediated nucleophilic alkylation of benzene. Science 358, 1168–1171 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Harder, S. in Early Main Group Metal Catalysis: Concepts and Reactions (Wiley-VCH, 2019).

  13. Kim, S. B. et al. Synthesis of calcium(II) amidinate precursors for atomic layer deposition through a redox reaction between calcium and amidines. Angew. Chem. Int. Ed. 55, 10228–10233 (2016).

    Article  CAS  Google Scholar 

  14. Buchanan, W. D., Allisa, D. G. & Ruhlandt-Senge, K. Synthesis and stabilization — advances in organoalkaline earth metal chemistry. Chem. Commun. 46, 4449–4465 (2010).

    Article  CAS  Google Scholar 

  15. Hanusa, T. P. New developments in the organometallic chemistry of calcium, strontium and barium. Polyhedron 9, 1345–1362 (1990).

    Article  CAS  Google Scholar 

  16. Johns, A. M., Chmely, S. C. & Hanusa, T. P. Solution interaction of potassium and calcium bis(trimethylsilyl)amides; preparation of Ca[N(SiMe3)2]2 from dibenzylcalcium. Inorg. Chem. 48, 1380–1384 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Gentner, T. X. & Mulvey, R. E. Alkali-metal mediation: diversity of applications in main-group organometallic chemistry. Angew. Chem. Int. Ed. 60, 9247–9262 (2021).

    Article  CAS  Google Scholar 

  18. Michel, O. et al. Diene dissolution of the heavier alkaline earth metals. Eur. J. Inorg. Chem. 2012, 998–1003 (2012).

    Article  CAS  Google Scholar 

  19. Mashima, K. et al. Diene complexes of calcium and strontium: first crystal structures of calcium- and strontium-diene complexes, M(2,3-dimethyl-1,4-diphenyl-1,3-butadiene)(THF)4 (M = Ca and Sr). J. Am. Chem. Soc. 116, 6977–6978 (1994).

    Article  CAS  Google Scholar 

  20. Beckmann, E. Einige Anwendungen von metallischem Calcium. Ber. Dtsch. Chem. Ges. 38, 904–906 (1905).

    Article  CAS  Google Scholar 

  21. Gilman, H. & Schulze, F. Organocalcium iodides. J. Am. Chem. Soc. 48, 2463–2467 (1926).

    Article  CAS  Google Scholar 

  22. Bryce-Smith, D. & Skinner, A. C. Organometallic compounds of group II. Part IV. Preparation and reactions of organocalcium halides. J. Chem. Soc. 1963, 577–585 (1963).

    Article  Google Scholar 

  23. Maercker, A. Ether cleavage with organo-alkali-metal compounds and alkali metals. Angew. Chem. Int. Ed. 26, 972–989 (1987).

    Article  Google Scholar 

  24. Kawabata, N., Matsumura, A. & Yamashita, S. Preparation of organocalcium halides. Tetrahedron 29, 1069–1071 (1973).

    Article  CAS  Google Scholar 

  25. Masthoff, R. & Krieg, G. Über Organometallverbindungen der II. Hauptgruppe; Triphenylmethylcalciumchlorid. Z. Chem. 6, 433–434 (1966).

    Article  CAS  Google Scholar 

  26. Fischer, R., Gärtner, M., Görls, H. & Westerhausen, M. Synthesis of 2,4,6-trimethylphenylcalcium iodide and degradation in THF solution. Angew. Chem. Int. Ed. 45, 609–612 (2006).

    Article  CAS  Google Scholar 

  27. Westerhausen, M., Koch, A., Görls, H. & Krieck, S. Heavy Grignard reagents: synthesis, physical and structural properties, chemical behavior, and reactivity. Chem. Eur. J. 23, 1456–1483 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Fischer, R., Görls, H. & Westerhausen, M. Reinvestigation of the synthesis of phenylcalcium iodide and the first structural characterization of a heavy Grignard reagent as [((THF)2CaPhI)3·(THF)CaO] with a central Ca4 tetrahedron. Inorg. Chem. Commun. 8, 1159–1161 (2005).

    Article  CAS  Google Scholar 

  29. Ruspic, C. & Harder, S. Synthesis and structure of an arylcalcium compound with an unusual calcium tetrahedron containing an encapsulated oxide. Organometallics 24, 5506–5508 (2005).

    Article  CAS  Google Scholar 

  30. Mulvey, R. E. et al. Cleave and capture chemistry illustrated through bimetallic-induced fragmentation of tetrahydrofuran. Nat. Chem. 2, 588–591 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Westerhausen, M. et al. Heavier group 2 Grignard reagents of the type aryl-Ae(L)n-X (post-Grignard reagents). Top. Organomet. Chem. 45, 29–72 (2013).

    CAS  Google Scholar 

  32. Domenicano, A., Vaciago, A. & Coulson, C. A. Molecular geometry of substituted benzene derivatives. II. A bond angle versus electronegativity correlation for the phenyl derivatives of second-row elements. Acta Crystallogr. B31, 1630–1641 (1975).

    Article  CAS  Google Scholar 

  33. Köhler, M., Langer, J., Görls, H. & Westerhausen, M. Solution stability of organocalcium compounds in ethereal media. Organometallics 33, 6381–6388 (2014).

    Article  Google Scholar 

  34. Schlenk, W. & Schlenk, W. Jr. Über die Konstitution der Grignardschen Magnesiumverbindungen. Ber. Dtsch. Chem. Ges. 62B, 920–924 (1929).

    Article  CAS  Google Scholar 

  35. Ohtaki, H. & Radnai, T. Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157–1204 (1993).

    Article  CAS  Google Scholar 

  36. Gentner, T. X. et al. Heteroleptic heavier alkaline earth metal amide complexes stabilized by a superbulky β-diketiminate ligand. Organometallics 38, 2485–2493 (2019).

    Article  CAS  Google Scholar 

  37. Fischer, R. et al. THF solvates of extremely soluble bis(2,4,6-trimethylphenyl)calcium and tris(2,6-dimethoxyphenyl)dicalcium iodide. Angew. Chem. Int. Ed. 46, 1618–1623 (2007).

    Article  CAS  Google Scholar 

  38. Langer, J., Krieck, S., Görls, H. & Westerhausen, M. An efficient general synthesis of halide-free diarylcalcium. Angew. Chem. Int. Ed. 48, 5741–5744 (2009).

    Article  CAS  Google Scholar 

  39. Gowenlock, B. G., Lindsell, W. E. & Singh, B. Preparation and isolation of alkyliodostrontium and alkyliodobarium compounds. J. Organomet. Chem. 101, C37–C39 (1975).

    Article  CAS  Google Scholar 

  40. Langer, J., Görls, H. & Westerhausen, M. Stability and reactivity of phenylstrontium compounds in solution. Organometallics 29, 2034–2039 (2010).

    Article  CAS  Google Scholar 

  41. Langer, J., Gärtner, M., Fischer, R., Görls, H. & Westerhausen, M. Reinvestigation of the reaction of strontium and barium with iodobenzene and molecular structure of the heavy Grignard reagent [((THF)2BaPh2)4·(THF)BaO] with an oxygen-centered square Ba5 pyramid. Inorg. Chem. Commun. 10, 1001–1004 (2007).

    Article  CAS  Google Scholar 

  42. Gowenlock, B. G., Lindsell, W. E. & Singh, B. The organometallic chemistry of the alkaline-earth metals. Part 3. Preparation and properties of alkylhalogenometal compounds and related species of calcium, strontium, and barium. J. Chem. Soc. Dalton Trans. 1978, 657–664 (1978).

    Article  Google Scholar 

  43. Yanagisawa, A., Habaue, S., Yasue, K. & Yamamoto, H. Allylbarium reagents: unprecedented regio- and stereoselective allylation reactions of carbonyl compounds. J. Am. Chem. Soc. 116, 6130–6141 (1994).

    Article  CAS  Google Scholar 

  44. Köhler, M., Görls, H., Langer, J. & Westerhausen, M. 1-Alkenylcalcium iodide: synthesis and stability. Chem. Eur. J. 20, 5237–5239 (2014).

    Article  PubMed  Google Scholar 

  45. Lappert, M. F. & Liu, D.-S. Recent studies on metal and metalloid bis(trimethylsilyl)methyls and the transformation of the bis(trimethylsilyl)methyl into the azaallyl and β-diketinimate ligands. J. Organomet. Chem. 500, 203–217 (1995).

    Article  CAS  Google Scholar 

  46. Cloke, F. G. N., Hitchcock, P. B., Lappert, M. F., Lawless, G. A. & Royo, B. Lipophilic strontium and calcium alkyls, amides and phenoxides; X-ray structures of the crystalline square-planar [{trans-Sr(NR′2)2(µ-1,4-dioxane)}] and tetrahedral [CaR2(1,4-dioxane)2];R′ = SiMe3, R = CH(SiMe3)2]. J. Chem. Soc. Chem. Commun. 1991, 724–726 (1991).

    Article  Google Scholar 

  47. Crimmin, M. R. et al. Bis(trimethylsilyl)methyl derivatives of calcium, strontium and barium: potentially useful dialkyls of the heavy alkaline earth elements. Chem. Eur. J. 14, 11292–11295 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Köhler, M., Koch, A., Görls, H. & Westerhausen, M. Trimethylsilylmethylcalcium iodide, an easily accessible Grignard-type reagent of a heavy alkaline earth metal. Organometallics 35, 242–248 (2016).

    Article  Google Scholar 

  49. Causero, A., Elsen, H., Pahl, J. & Harder, S. Calcium hydride reactivity: formation of an anionic N-heterocyclic olefin ligand. Angew. Chem. Int. Ed. 56, 6906–6910 (2017).

    Article  CAS  Google Scholar 

  50. Wolf, B. M., Stuhl, C., Maichle-Mössmer, C. & Anwander, R. Dimethylcalcium. J. Am. Chem. Soc. 140, 2373–2383 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Krieck, S., Schüler, P., Peschel, J. M. & Westerhausen, M. Straightforward one-pot syntheses of silylamides of magnesium and calcium via an in situ Grignard Metalation Method. Synthesis 51, 1115–1122 (2019).

    Article  CAS  Google Scholar 

  52. Schüler, P. et al. In situ Grignard Metalation Method, part II: scope of the one-pot synthesis of organocalcium compounds. Chem. Eur. J. 28, e202201897 (2022).

    Article  PubMed  Google Scholar 

  53. de Bruin-Dickason, C. N., Deacon, G. B., Jones, C., Junk, P. C. & Wiecko, M. Functionalised alkaline earth iodides from Grignard synthons “PhAeI(THF)n” (Ae = Mg-Ba). Eur. J. Inorg. Chem. 2019, 1030–1038 (2019).

    Article  Google Scholar 

  54. Schüler, P., Sengupta, S., Krieck, S. & Westerhausen, M. In situ-generation of magnesium- and calcium-based Grignard reagents for amide synthesis. Chem. Eur. J. 29, e202300833 (2023).

    Article  PubMed  Google Scholar 

  55. Fraser, R. R., Mansour, T. S. & Savard, S. Acidity measurements on pyridines in tetrahydrofuran using lithiated silylamines. J. Org. Chem. 50, 3232–3234 (1985).

    Article  CAS  Google Scholar 

  56. Sengupta, S. et al. Synthesis of sterically encumbered alkaline-earth metal amides applying the in situ Grignard reagent formation. Chem. Eur. J. 29, e202201359 (2022).

    Article  Google Scholar 

  57. Barbier, P. Synthèse du diéthylhepténol. C. R. Hebd. Séances Acad. Sci. 128, 110–111 (1899).

    CAS  Google Scholar 

  58. Gao, P., Jiang, J., Maeda, S., Kubota, K. & Ito, H. Mechanochemically generated calcium-based heavy Grignard reagents and their application to carbon–carbon bond-forming reactions. Angew. Chem. Int. Ed. 61, e202207118 (2022).

    Article  CAS  Google Scholar 

  59. Takacs, L. The historical development of mechanochemistry. Chem. Soc. Rev. 42, 7649–7659 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Kaupp, G. Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm 11, 388–403 (2009).

    Article  CAS  Google Scholar 

  61. Howard, J. L., Cao, Q. & Browne, D. L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem. Sci. 9, 3080–3094 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fiss, B. G. et al. A. Mechanochemical methods for the transfer of electrons and exchange of ions: inorganic reactivity from nanoparticles to organometallics. Chem. Soc. Rev. 50, 8279–8318 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Green, S. P., Jones, C. & Stasch, A. Stable magnesium(I) compounds with Mg-Mg bonds. Science 318, 1754–1757 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Jędrzkiewicz, D. et al. Access to a labile monomeric magnesium radical by ball-milling. Angew. Chem. Int. Ed. 61, e202200511 (2022).

    Article  Google Scholar 

  65. Jędrzkiewicz, D., Langer, J. & Harder, S. Low-valent Mg(I) complexes by ball-milling. Z. Anorg. Allg. Chem. 648, e202200138 (2022).

    Article  Google Scholar 

  66. Schorigin, P., Issaguljanz, W., Gussewa, A., Ossipova, V. & Poljakowa, C. Über die Darstellung und Verarbeitung von Organomagnesiumverbindungen ohne Anwendung von Äther, i. Mitteil.: über die Darstellung von β-Phenyl-äthylalkohol. Ber. Dtsch. Chem. Ges. 64, 2584–2590 (1931).

    Article  Google Scholar 

  67. Speight, I. R. & Hanusa, T. P. Exploration of mechanochemical activation in solid-state fluoro-Grignard reactions. Molecules 25, 570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Takahashi, R. et al. Mechanochemical synthesis of magnesium-based carbon nucleophiles in air and their use in organic synthesis. Nat. Commun. 12, 6691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pfennig, V. S., Villella, R. C., Nikodemus, J. & Bolm, C. Mechanochemical Grignard reactions with gaseous CO2 and sodium methyl carbonate. Angew. Chem. Int. Ed. 61, e202116514 (2022).

    Article  CAS  Google Scholar 

  70. Harrowfield, J. M., Hart, R. J. & Whitaker, C. R. Magnesium and aromatics: mechanically-induced Grignard and McMurry reactions. Aust. J. Chem. 54, 423–425 (2001).

    Article  CAS  Google Scholar 

  71. Zaluska, A., Zaluski, L. & Strom-Olsen, J. O. Lithium–beryllium hydrides: the lightest reversible metal hydrides. J. Alloy. Compd. 307, 157–166 (2000).

    Article  CAS  Google Scholar 

  72. Waddell, D. C., Clark, T. D. & Mack, J. Conducting moisture sensitive reactions under mechanochemical conditions. Tetrahedron Lett. 53, 4510–4513 (2012).

    Article  CAS  Google Scholar 

  73. Snieckus, V. Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem. Rev. 90, 879–933 (1990).

    Article  CAS  Google Scholar 

  74. Markies, P. R., Nomoto, T., Schat, G., Akkerman, O. S. & Bickelhaupt, F. Unusual metalation and halogen-metal exchange reactions between 1,3-xylyl crown ethers and organomagnesium reagents. X-ray structure of 2-[(p-tert-butylphenyl)magnesio]-1,3-xylylene-18-crown-5. Organometallics 10, 3826–3837 (1991).

  75. Pahl, J., Brand, S., Elsen, H. & Harder, S. Highly Lewis acidic cationic alkaline earth metal complexes. Chem. Commun. 54, 8685–8688 (2018).

    Article  CAS  Google Scholar 

  76. Garcia, L., Anker, M. D., Mahon, M. F., Maron, L. & Hill, M. S. Coordination of arenes and phosphines by charge separated alkaline earth cations. Dalton Trans. 47, 12684–12693 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Pahl, J., Friedrich, A., Elsen, H. & Harder, S. Cationic magnesium π–arene complexes. Organometallics 37, 2901–2909 (2018).

    Article  CAS  Google Scholar 

  78. Thum, K. et al. Lewis acidic cationic strontium and barium complexes. Eur. J. Inorg. Chem. 2021, 2643–2653 (2021).

    Article  CAS  Google Scholar 

  79. Thum, K. et al. Unsupported Mg–alkene bonding. Chem. Eur. J. 27, 2513–2522 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Barrett, A. G. M. et al. Catalytic 2,3,4-hexatriene formation by terminal alkyne coupling at calcium. Chem. Commun. 2009, 2299–2301 (2009).

    Article  Google Scholar 

  81. Rösch, B. et al. Nucleophilic aromatic substitution at benzene with powerful strontium hydride and alkyl complexes. Angew. Chem. Int. Ed. 58, 5396–5401 (2019).

    Article  Google Scholar 

  82. Martin, J. et al. Highly active superbulky alkaline earth metal amide catalysts for hydrogenation of challenging alkenes and aromatic rings. Angew. Chem. Int. Ed. 59, 9102–9112 (2020).

    Article  CAS  Google Scholar 

  83. Stegner, P. et al. Metallic barium: a versatile and efficient hydrogenation catalyst. Angew. Chem. Int. Ed. 60, 4252–4258 (2021).

    Article  CAS  Google Scholar 

  84. Färber, C. et al. Teaming up main group metals with metallic iron to boost hydrogenation catalysis. Nat. Commun. 13, 3210 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Martin, J., Eyselein, J., Grams, S. & Harder, S. Hydrogen isotope exchange with superbulky alkaline earth metal amide catalysts. ACS Catal. 10, 7792–7799 (2020).

    Article  CAS  Google Scholar 

  86. Mai, J. et al. Alkaline-earth metal mediated benzene-to-biphenyl coupling. Angew. Chem. Int. Ed. 62, e202212463 (2023).

    Article  CAS  Google Scholar 

  87. Wilson, A. S. S., Hill, M. S., Mahon, M. F., Dinoi, C. & Maron, L. Dehydrohalogenation of halobenzenes and C(sp3)-X (X = F, OPh) bond activation by a molecular calcium hydride. Tetrahedron 82, 131931 (2021).

    Article  CAS  Google Scholar 

  88. Wiesinger, M. et al. Carbon-halogen bond activation with powerful heavy alkaline earth metal hydrides. Eur. J. Inorg. Chem. 2021, 3731–3741 (2021).

    Article  CAS  Google Scholar 

  89. Li, H. et al. Intramolecular C–F and C–H bond cleavage promoted by butadienyl heavy Grignard reagents. Nat. Commun. 5, 4508 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Ong, D. Y., Tejo, C., Xu, K., Hirao, H. & Chiba, S. Hydrodehalogenation of haloarenes by a sodium hydride–iodide composite. Angew. Chem. Int. Ed. 56, 1840–1844 (2017).

    Article  CAS  Google Scholar 

  91. Cui, B., Jia, S., Tokunaga, E. & Shibata, N. Defluorosilylation of fluoroarenes and fluoroalkanes. Nat. Commun. 9, 4393 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Maitland, B. et al. A simple route to calcium and strontium hydride clusters. Angew. Chem. Int. Ed. 56, 11880–11884 (2017).

    Article  CAS  Google Scholar 

  93. Wiesinger, M. et al. Simple access to the heaviest alkaline earth metal hydride: a strongly reducing hydrocarbon-soluble barium hydride cluster. Angew. Chem. Int. Ed. 56, 16654–16659 (2017).

    Article  CAS  Google Scholar 

  94. Kwan, E. E., Zeng, Y., Besser, H. A. & Jacobsen, E. N. Concerted nucleophilic aromatic substitutions. Nat. Chem. 10, 917–923 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kaupp, M. “Non-VSEPR” structures and bonding in d0 systems. Angew. Chem. Int. Ed. 40, 3534–3565 (2001).

    Article  CAS  Google Scholar 

  96. Kaupp, M., Schleyer, Pv. R., Dolg, M. & Stoll, H. The equilibrium structures of monomeric group 2 and lanthanide(II) metallocenes MCp2 (M = calcium, strontium, barium, samarium, europium, ytterbium) studied by ab initio calculations. J. Am. Chem. Soc. 114, 8202–8208 (1992).

    Article  CAS  Google Scholar 

  97. Pal, R. et al. Linear MgCp*2 vs bent CaCp*2: London dispersion, ligand-induced charge localizations, and pseudo-pregostic C–H···Ca interactions. Inorg. Chem. 57, 4906–4920 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Kaupp, M., Schleyer, Pv. R., Stoll, H. & Preuss, H. The question of bending of the alkaline earth dihalides MX2(M = Be, Mg, Ca, Sr, Ba; X = F, Cl, Br, I). An ab initio pseudopotential study. J. Am. Chem. Soc. 113, 6012–6020 (1991).

    Article  CAS  Google Scholar 

  99. Gagliardi, L. & Pyykkö, P. Cesium and barium as honorary d elements: CsN7Ba as an example. Theor. Chem. Acc. 110, 205–210 (2003).

    Article  CAS  Google Scholar 

  100. Zhou, M. & Frenking, G. Transition-metal chemistry of the heavier alkaline earth atoms Ca, Sr, and Ba. Acc. Chem. Res. 54, 3071–3082 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Manning, M. F. & Krutter, H. M. Electronic energy bands in metallic calcium. Phys. Rev. 51, 761–764 (1937).

    Article  CAS  Google Scholar 

  102. Wright, L. & Weller, S. The catalytic activity of barium and calcium hydrides. III. Hydrogen exchange with some C4 hydrocarbons. J. Am. Chem. Soc. 76, 5948–5950 (1954).

    Article  CAS  Google Scholar 

  103. Trapnell, B. M. W. The activities of evaporated metal films in gas chemisorption. Proc. R. Soc. A Math. Phys. Eng. Sci. 218, 566–577 (1953).

    CAS  Google Scholar 

  104. Turnbull, J. C. Barium, strontium, and calcium as getter in electron tubes. J. Vac. Sci. Technol. 14, 636–639 (1977).

    Article  CAS  Google Scholar 

  105. Wu, X. et al. Observation of alkaline earth complexes M(CO)8(M = Ca, Sr, or Ba) that mimic transition metals. Science 361, 912–916 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Wang, Q. et al. Transition-metal chemistry of alkaline-earth elements: the trisbenzene complexes M(Bz)3 (M=Sr, Ba). Angew. Chem. Int. Ed. 58, 17365–17374 (2019).

    Article  CAS  Google Scholar 

  107. Wang, Q. et al. Octa-coordinated alkaline earth metal–dinitrogen complexes M(N2)8 (M=Ca, Sr, Ba). Nat. Commun. 10, 3375 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Landis, C. R., Hughes, R. P. & Weinhold, F. Comment on “Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals”. Science 365, eaay2355 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Zhao, L., Pan, S., Zhou, M. & Frenking, G. Response to comment on “Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals”. Science 365, eaay5021 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Jeung, G., Daudey, J. P. & Malrieu, J. P. Theoretical study of the electronic states of calcium and calcium hydride. Chem. Phys. Lett. 98, 433–438 (1983).

    Article  CAS  Google Scholar 

  111. Rösch, B. et al. Dinitrogen complexation and reduction at low-valent calcium. Science 371, 1125–1128 (2021).

    Article  PubMed  Google Scholar 

  112. Stegner, P. et al. d–d dative bonding between iron and the alkaline-earth metals calcium, strontium, and barium. Angew. Chem. Int. Ed. 59, 14615–14620 (2020).

    Article  CAS  Google Scholar 

  113. Holleman, A. F., Wiberg, E. & Wiberg N. in Lehrbuch der Anorganischen Chemie 102nd edn. 2146–2147 (de Gruyter, 2007).

  114. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 5, 751–767 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

The Friedrich-Alexander University Erlangen-Nürnberg is acknowledged for support.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed substantially to the discussion of the content and reviewed and/or edited the manuscript before submission. S.H. wrote the article.

Corresponding author

Correspondence to Sjoerd Harder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Matthias Westerhausen, Robert Mulvey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harder, S., Langer, J. Opportunities with calcium Grignard reagents and other heavy alkaline-earth organometallics. Nat Rev Chem 7, 843–853 (2023). https://doi.org/10.1038/s41570-023-00548-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00548-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing