Skip to main content
Log in

Petrogenesis of Fe-Ti-P mineral deposits associated with Proterozoic anorthosite massifs in the Grenville Province: insights from oxide and apatite trace-element geochemistry at Lac à l’Orignal, Quebec, Canada

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

A Correction to this article was published on 31 October 2023

This article has been updated

Abstract

Proterozoic anorthosite massifs can host significant amounts of critical and strategic metals such as Ti, V, and P, associated with magmatic Fe-Ti oxides and apatite. Yet their petrogenesis is much less understood than Fe-Ti-V-P deposits hosted in layered intrusions within large igneous provinces. Several mineralized lenses of Fe-Ti-P outcrop near the border of the 1080 (±2) Ma Vanel and the 1016 (±2) Ma Mattawa Anorthosite Massifs, in the Central Grenville Province, Quebec, Canada. For example, the Lac à l’Orignal Fe-Ti-P deposit, hosted in the Vanel Anorthosite near the northern border of the Mattawa Anorthosite, comprises a lenticular structure of oxide apatite norite (OAN) with thin layers of apatite-bearing anorthosite and minor amounts of nelsonite (massive Fe-Ti oxides and apatite), indicating accumulation by density differences. Oxide settling generated the melanocratic OAN cumulates and nelsonite. Plagioclase flotation generated the leucocratic apatite-bearing anorthosite layers. The mineralization is dominated by hemo-ilmenite, accompanied by apatite and a minor amount of magnetite at the borders, whereas the core is dominated by ilmenite, magnetite, and apatite. In-situ U-Pb dating of magmatic zircon indicates that the Lac à l’Orignal deposit is a multistage intrusion with two different crystallization ages between the younger core (993 ± 13 Ma) and the older upper border (1069 ± 12 Ma) of the intrusion. These ages are similar to those of nearby anorthosite-massifs (Mattawa and Vanel Anorthosites, respectively). In-situ trace element analysis of plagioclase, apatite and oxides, by laser ablation ICP-MS, reveals subtle variations in certain trace elements (e.g., Cr, Ni, V) related to differentiation under relatively high-fO2 conditions (FMQ = +0.9 to +1.7). Calculated melt compositions from apatite indicate a similar parental magma for both the border and core that matches the composition of high-Fe-Ti-P ferrodiorite dykes at Lac à l’Original. This high-Ti-P ferrodiorite magma was probably residual after anorthosite formation. Sub-solidus inter-oxide equilibration modified the original composition of the different cumulates in the intrusion. The absence of extensive massive oxide cumulates and the presence of higher amounts of cumulus magnetite and apatite, supported by mineral chemistry, denotes a more evolved character for the Lac à l’Orignal deposit compared with other Fe-Ti-(P) deposits in the Grenville Province (e.g., Lac Tio Fe-Ti and Grader intrusion Fe-Ti-P deposits in the Havre St. Pierre Anorthosite, eastern Quebec). Petrogenetically, the Lac à l’Orignal Fe-Ti-P deposit corresponds to an evolved part of a low-Ti/Fe system in the Grenville Province in the late stages of differentiation of ferrodiorite/jotunite magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  • Andersen DJ, Lindsley DH, Davidson PM (1993) QUIlF: a PASCAL program to assess equilibria among Fe–Mg–Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350

    ADS  CAS  Google Scholar 

  • Arguin J-P, Pagé P, Barnes S-J, Girard R, Duran C (2018) An Integrated Model for ilmenite, Al-spinel, and corundum exsolutions in titanomagnetite from oxide-rich layers of the Lac Doré complex (Québec, Canada). Minerals 8(11):476

    ADS  CAS  Google Scholar 

  • Ashwal LD (1993) Anorthosites. Springer, Heidelberg

    Google Scholar 

  • Ashwal LD (2010) The temporality of anorthosites. Can Mineral 48(4):711–728

    CAS  Google Scholar 

  • Barnes SJ, Maier WD, Ashwal LD (2004) Platinum-group element distribution in the main zone and upper zone of the Bushveld Complex, South Africa. Chem Geol 208(1-4):293–317

    ADS  CAS  Google Scholar 

  • Barnes SJ, Mansur ET, Pagé P, Meric J, Arguin JP (2020) Major and trace element compositions of chromites from the Stillwater, Bushveld and Great Dyke intrusions compared with chromites from komatiites, boninites and large igneous provinces. Presentation at the EGU general assembly conference.

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5(2):310–357

    ADS  CAS  Google Scholar 

  • Bybee GM, Ashwal LD (2015) Isotopic disequilibrium and lower crustal contamination in slowly ascending magmas: Insights from Proterozoic anorthosites. Geochim Cosmochim Acta 167:286–300

    ADS  CAS  Google Scholar 

  • Cawthorn RG (2007) Cr and Sr: Keys to parental magmas and processes in the Bushveld Complex, South Africa. Lithos 95(3-4):381–398

    ADS  CAS  Google Scholar 

  • Charlier B, Duchesne J-C, Vander Auwera J (2006) Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe–Ti ores in massif-type anorthosites. Chem Geol 234:264–290

    ADS  CAS  Google Scholar 

  • Charlier B, Grove TL (2012) Experiments on liquid immiscibility along tholeiitic liquid lines of descent Contrib. Mineral Petrol 164(1):27–44

    ADS  CAS  Google Scholar 

  • Charlier B, Namur O, Bolle O et al (2015) Fe-Ti-V-P ore deposits associated with Proterozoic massif type anorthosites and related rocks. Earth-Sci Rev 141:56–81. https://doi.org/10.1016/j.earscirev.2014.11.005

    Article  ADS  CAS  Google Scholar 

  • Charlier B, Namur O, Duchesne J-C, Wiszniewska J, Parecki A, Vander Auwera J (2009) Cumulate origin and polybaric crystallization of Fe–Ti oxide ores in the Suwalki anorthosite, Northeastern Poland. Econ Geol 104:205–221

    CAS  Google Scholar 

  • Charlier B, Namur O, Malpas S, de Marneffe C, Duchesne JC, Vander Auwera J, Bolle O (2010) Origin ofthe giant Allard Lake ilmenite ore deposit (Canada) by fractional crystallization, multiple magma pulses and mixing. Lithos 117:119–134

    ADS  CAS  Google Scholar 

  • Charlier B, Sakoma E, Sauve M, Stanaway K, Vander Auwera J, Duchesne J-C (2008) The Grader layered intrusion (Havre-Saint-Pierre Anorthosite, Quebec) and genesis of nelsonite and other Fe–Ti–P ores. Lithos 101:359–378

    ADS  CAS  Google Scholar 

  • Charlier B, Skar O, Korneliussen A, Duchesne J-C, Vander Auwera J (2007) Ilmenite composition in the Tellnes Fe–Ti deposit, SW Norway: fractional crystallization, postcumulus evolution and ilmenite–zircon relation. Contrib Mineral Petrol 154:119–134

    ADS  CAS  Google Scholar 

  • Charlier B, Vander Auwera J, Duchesne JC (2005) Geochemistry of cumulates from the Bjerkreim–Sokndal layered intrusion (S. Norway): Part II: REE and the trapped liquid fraction. Lithos 83(3-4):255–276

    ADS  CAS  Google Scholar 

  • Chen W, Zhou M-F, Zhao T-P (2013) Differentiation of nelsonitic magmas in the formation of the - 1.74 Ga Damiao Fe-Ti-P ore deposit, North China. Contrib Mineral Petrol 165:1341–1362

    ADS  CAS  Google Scholar 

  • Coint N, Keiding JK, Ihlen PM (2020) Evidence for silicate–liquid immiscibility in monzonites and petrogenesis of associated Fe–Ti–P-rich rocks: Example from the Raftsund Intrusion, Lofoten, Northern Norway. J Petrol, 61(4)

  • Corriveau L, Perreault S, Davidson A (2007) Prospective metallogenic settings of the Grenville Province. In: Goodfellow WD (ed) Mineral Deposits of Canada: a Synthesis of Major Deposit-types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Survey of Canada. Mineral Deposits Division, Special Publication, pp 819–847

    Google Scholar 

  • Dare S, Bethell E, Barnes SJ (2019) Constraining the formation of Fe-Ti-VP deposits using trace elements in Fe-Ti oxides: insights from the chemostratigraphic variation of magnetite and ilmenite in the Upper Zone of the Bushveld Igneous Complex. Presentation at GAC-MAC-IAH Québec 2019

  • Dare SA, Barnes S-J, Beaudoin G et al (2014) Trace elements in magnetite as petrogenetic indicators. Mineral Deposita 49:785–796

    ADS  CAS  Google Scholar 

  • Duchesne JC (1972) Iron-titanium oxide minerais in the Bjerkrem-Sogndal Massif, South-western Norway. J Petrol 13:57–81

    ADS  CAS  Google Scholar 

  • Duchesne JC, Charlier B (2005) Geochemistry of cumulares from the Bjerkreim-Sokndal layered intrusion (S. Norway). Part 1: constraints from major elements on the mechanism of cumulate formation and on the jotunite liquid line of descent. Lithos 83:229–254

    ADS  CAS  Google Scholar 

  • Duchesne JC, Shumlyanskyy L, Charlier B (2006) The Fedorivka layered intrusion (Korosten Pluton, Ukraine): an example ofhighly differentiated ferrobasaltic evolution. Lithos 89:353–376

    ADS  CAS  Google Scholar 

  • Dymek RF, Owens BE (2001) Petrogenesis of apatite-rich rocks (nelsonites and oxide apatite gabbronorites) associated with massif anorthosites. Econ Geol 96:797–815

    CAS  Google Scholar 

  • Emslie RF (1985) Proterozoic anorthosite massifs. In: Tobi AC, Touret JLR (eds) The Deep Proterozoic Crust in the North Atlantic Provinces. Reidel, Dordrecht, pp 39–60

    Google Scholar 

  • Frost BR (1991) Magnetic petrology: factors that control the occurrence of magnetite in crustal rocks. Rev Mineral Geochem 25(1):489–509

    CAS  Google Scholar 

  • Frost BR, Lindsley DH (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz: Part I. Theory. Am Mineral 77(9-10):987–1003

    Google Scholar 

  • Frost BR, Lindsley DH, Andersen DJ (1988) Fe-Ti oxide-silicate equilibria: assemblages with fayalitic olivine. Am Mineral 73:727–740

    CAS  Google Scholar 

  • Frost CD, Frost BR, Lindsley DH, Chamberlain KR, Swapp SM, Scoates JS (2010) Chemical and isotopic evolution of the anorthositic plutons of the Laramie Anorthosite Complex: Explanations for variations in silica activity and oxygen fugacity of massif anorthosites. Can Mineral 48(4):925–946

    CAS  Google Scholar 

  • Gobeil A, Brisebois D, Clark T, Verpaelst P, Madore L, Wodicka N, Cheve S (2003) Geologie de la moyenne Cote-Nord. In: Brisebois D, Clark T (eds) Geologie et ressources minerales de la partie est de la Province de Grenville. Ministere des Ressources naturelles, de la Faune et des Parcs, Quebec, pp 9–58 DV 2002-03

    Google Scholar 

  • Grant M (2020) Formation of magmatic Fe-Ti-V-P deposits within the Lac St. Jean area Saguenay, Québec, Canada: Insights from trace element composition of Fe-oxides and apatite. (Unpublished masters thesis). University of Ottawa, Ontario, Canada, p 343

    Google Scholar 

  • Hébert C, Cadieux A-M, Van Breemen O (2005) Temporal evolution and nature of Ti– Fe–P mineralization in the anorthosite–mangerite–charnockite–granite (AMCG) suites of the South–central Grenville Province, Saguenay – Lac St. Jean area, Quebec, Canada. Can J Earth Sci 42:1865–1880

    Google Scholar 

  • Hébert C, Van Breemen O (2004) Redefinition of the Lac-St.-Jean Anorthosite, Central Grenville Province, Québec, based on compositional, structural, geochronological, and mineral deposit features. In AGU Spring Meeting Abstracts (Vol. 2004, pp. V53A-03)

  • Hébert C, Van Breemen O, Cadieux A (2009) Région du reservoir Pipmuacan, (SNRC 22E): Synthese Geologique. RG 2009-01. Ministère des ressources naturelles et de la faune, Gouvernement du Québec. Geological Repport

  • Higgins MD, Ider M, Breemen OV (2002) U-Pb ages of plutonism, wollastonite formation, and deformation in the central part of the Lac-Saint-Jean anorthosite suite. Can J Earth Sci 39(7):1093–1105

    CAS  Google Scholar 

  • Higgins MD, Van Breemen O (1992) The age of the Lac-Saint-Jean anorthosite complex and associated mafic rocks, Grenville Province, Canada. Can J Earth Sci 29(7):1412–1423

    CAS  Google Scholar 

  • Higgins MD, Van Breemen O (1996) Three generations of Anorthosite–Mangerite– Charnockite–Granite magmatism, contact metamorphism and tectonism in the Saguenay – Lac–St-Jean region, Grenville Province, Canada. Precambrian Res 79:347–362

    ADS  Google Scholar 

  • Hou T, Charlier B, Holtz F, Veksler I, Zhang Z, Thomas R, Namur O (2018) Immiscible hydrous Fe–Ca–P melt and the origin of iron oxide-apatite ore deposits. Nat Commun 9(1):1–8

    Google Scholar 

  • Irvine TN (1982) Terminology for layered intrusions. J Petrol 23(2):127–162

    ADS  Google Scholar 

  • Kieffer MA, Dare SA, Namur O (2022) The use of trace elements in apatite to trace differentiation of a ferrobasaltic melt in the Sept-Iles Intrusive Suite. Implications for provenance discrimination. Geochimica et Cosmochimica Acta, Quebec, Canada

    Google Scholar 

  • Klemme S, Gunther D, Hametner K, Prowatke S, Zack T (2006) The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol 234:251–263

    ADS  CAS  Google Scholar 

  • Lattard D, Sauerzapf U, Kasemann M (2005) New calibration data for the Fe-Ti oxide thermo-oxybarometers from experiments in the Fe-Ti-O system at 1 bar, 1,000- 1,300 °C and a large range of oxygen fugacities. Contrib Mineral Petrol 149:735–754

    ADS  CAS  Google Scholar 

  • Laverdière G (2013) Rapport de travaux d’exploration. In: Propriété Lac Orignal, Région du Saguenay-Lac Saint Jean. Glen Eagle Resources Inc

    Google Scholar 

  • Laverdiere G (2016) Rapport de travaux d’exploration. In: Propriete Lac Original, Region du Saguneay-Lac Saint Jean. Glen Eagle Resources Inc

    Google Scholar 

  • Lin L, Sawyer E (2019) Microstructure and compositional changes across biotite-rich reaction selvedges around mafic schollen in a semppelitic diatexite migmatite. J Metamorph Geol 37:539–566

    ADS  CAS  Google Scholar 

  • Ludden J, Hynes A (2000) The Lithoprobe Abitibi-Grenville transect: two billion years of crust formation and recycling in the Precambrian Shield of Canada. Canadian Journal of Earth Sciences 37(2–3):459–476

    ADS  Google Scholar 

  • McLelland J, Ashwal L, Moore L (1994) Composition and petrogenesis of oxide-, apatiterich gabbronorites assoeiated with Proterozoic anorthosite massifs: examples from the Adirondack Mountains, New York. Contrib Mineral Petrol 116:225–238

    ADS  CAS  Google Scholar 

  • Mitchell JN, Scoates JS, Frost CD, Kolker A (1996) The geochemical evolution of anorthosite residual magmas in the Laramie Anorthosite Complex, Wyoming. J Petrol 37:637–660

    ADS  CAS  Google Scholar 

  • Morisset C-E, Scoates JS, Weis D, Friedman RM (2009) U–Pb and 40Ar/39Ar geochronology of the Saint-Urbain and Lac Allard (Havre-Saint-Pierre) anorthosites and their associated Fe–Ti oxide ores, Quebec: evidence for emplacement and slow cooling during the collisional Ottawan orogeny in the Grenville Province. Precambrian Res 174:95–116

    ADS  CAS  Google Scholar 

  • Morisset C-E, Scoates JS, Weis D, Sauve M, Stanaway KJ (2010) Rutile-bearing ilmenite deposits associated with the Proterozoic Saint-Urbain and Lac Allard anorthosite massifs, Grenville Province, Québec. Can Mineral 48:821–849

    CAS  Google Scholar 

  • Morse SA (1982) A partisan review of Proterozoic anorthosites. Am Mineral 67(11-12):1087–1100

    CAS  Google Scholar 

  • Namur O, Charlier B, Holness MB (2012) Dual origin of Fe-Ti-P gabbros by immiscibility and fractional crystallization of evolved tholeiitic basalts in the Sept Iles layered intrusion. Lithos 154:100–114

    ADS  CAS  Google Scholar 

  • Namur O, Charlier B, Toplis MJ, Higgins MD, Liégeois JP, Vander Auwera J (2010) Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion, Canada. J Petrol 51(6):1203–1236

    ADS  CAS  Google Scholar 

  • Owens BE, Dymek RF (1992) Fe-Ti-P-rich rocks and massif anorthosite: problems of interpretation illustrated from the Labrieville and St-Urbain plutons, Quebec. Can Mineral 30:163–190

    CAS  Google Scholar 

  • Owens BE, Dymek RF (2005) Rediscovery of the Mattawa anorthosite massif, Grenville Province, Quebec. Can J Earth Sci 42:1699–1718

    CAS  Google Scholar 

  • Owens BE, Dymek RF (1995) Significance of pyroxene megacrysts for massif anorthosite petrogenesis: constraints from the Labrieville, Quebec, pluton. American Mineralogist 80(1–2):144–161

    ADS  CAS  Google Scholar 

  • Owens BE, Dymek RF, Tucker RD, Brannon JC, Podosek FA (1994) Age and radiogenic isotopic composition of a late-to post-tectonic anorthosite in the Grenville Province: the Labrieville massif Quebec. Lithos 31(3–4):189–206

    ADS  CAS  Google Scholar 

  • Owens BE, Rockow MW, Dymek RF (1993) Jotunites from the Grenville Province, Quebec: petrological characteristics and implications for massif anorthosite petrogenesis. Lithos 30:57–80

    ADS  CAS  Google Scholar 

  • Pang K-N, Li C, Zhou M-F, Ripley EM (2007) Abundant Fe–Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions, SW China: evidence for early saturation of Fe–Ti oxides in ferrobasaltic magma. Contrib Mineral Petrol 156:307–321

    ADS  Google Scholar 

  • Perrot M, Tremblay A, David J (2017) Detrital zircon U-Pb geochronology of the Magog Group, southern Quebec–stratigraphic and tectonic implications for the Quebec Appalachians. Am J Sci 317(10):1049–1094

    ADS  CAS  Google Scholar 

  • Philpotts AR (1967) Origin of certain iron-titanium oxide and apatite roeks. Econ Geol 62:303–315

    CAS  Google Scholar 

  • Philpotts AR (1982) Compositions of immiscible liquids in volcanic roeks. Contrib Mineral Petrol 80:201–218

    ADS  CAS  Google Scholar 

  • Polivchuk M, Dare SAS (2017) The formation of vanadium deposits of the Archean Bell River Complex. Insights from Fe Ti oxide chemistry, Quebec, Canada

    Google Scholar 

  • Rivers T (1997) Lithotectonic elements of the Grenville Province: review and tectonic implications. Precambrian Res 86:117–154

    ADS  CAS  Google Scholar 

  • Roelandts I, Duchesne JC (1979) Origin and distribution of the elements

  • Scoates JS, Lindsley DH, Frost BR (2010) Magmatic and structural evolution of an anorthositic magma chamber: the Poe Mountain intrusion, Laramie Anorthosite complex, Wyoming. Can Mineral 48:851–885

    CAS  Google Scholar 

  • Slagstad T, Henderson IH, Roberts NM, Kulakov EV, Ganerød M, Kirkland CL, Coint N (2022) Anorthosite formation and emplacement coupled with differential tectonic exhumation of ultrahigh-temperature rocks in a Sveconorwegian continental back-arc setting. Precambrian Res 376:106695

    CAS  Google Scholar 

  • Snyder D, Carmichael IS, Wiebe RA (1993) Experimental study of liquid evolution in an Fe-rich, layered mafic intrusion: constrains of Fe-Ti oxide precipitation on the T-f02 and T-ϱ paths of tholeiitic magmas. Contrib Mineral Petrol 113:73–86

    ADS  CAS  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42(1):313–345

  • Tanner D, Mavrogenes JA, Arculus RJ, Jenner FE (2014) Trace element stratigraphy of the Bellevue Core, Northern Bushveld: multiple magma injections obscured by diffusive processes. J Petrol 55(5):859–882

    ADS  CAS  Google Scholar 

  • Tegner C, Cawthorn RG, Kruger FJ (2006) Cyclicity in the Main and Upper Zones of the Bushveld Complex, South Africa: crystallization from a zoned magma sheet. J Petrol 47(11):2257–2279

    ADS  CAS  Google Scholar 

  • Tollari N, Barnes SJ, Cox RA, Nabil H (2008) Trace element concentrations in apatites from the Sept-Îles Intrusive Suite, Canada—implications for the genesis of nelsonites. Chem Geol 252(3-4):180–190

    ADS  CAS  Google Scholar 

  • Toplis M, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–37

    ADS  CAS  Google Scholar 

  • Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170

    ADS  CAS  Google Scholar 

  • Toplis MJ, Libourel G, Carroll MR (1994b) The role of phosphorus in crystallisation processes of basalt: an experimental study. Geochim Cosmochim Acta 58(2):797–810

    ADS  CAS  Google Scholar 

  • Vander Auwera J, Longhi J (1994) Experimental study of a jotunite (hypersthene monzodiorite): constraints on the parent magma composition and crystallization conditions (P, T,JO,) of the Bjerkreim-Sokndal layered intrusion (Norway). Contrib Mineral Petrol 118:60–78

    ADS  Google Scholar 

  • Vander Auwera J, Longhi J, Duchesne JC (1998) A liquid line of descent of the jotunite (hypersthene monzodiorite) suite. J Petrol 39:439–468

    ADS  CAS  Google Scholar 

  • Vander Auwera J, Weis D, Duchesne JC (2006) Marginal mafic intrusions as indicators of downslope draining of dense residual melts in anorthositic diapirs? Lithos 89:329–352

    ADS  CAS  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64(2):295–304

    ADS  CAS  Google Scholar 

  • Wilson JR, Robins B, Nielsen FM, Duchesne JC, Vander Auwera J (1996) The Bjerkreim-Sokndal layered intrusion, Southwest Norway. In: Developments in Petrology, vol 15. Elsevi, pp 231–255

    Google Scholar 

  • Yassa A (2022) Technical report and initial mineral resource estimate of the Lac Orignal phosphate property, Saguenay-Lac-Saint-Jean region. First Phosphate Corp, Northern Québec

    Google Scholar 

Download references

Acknowledgements

The authors thank Christian Tremblay (TRCM-UQAC) and Leopold Tremblay for their assistance with field work; to Frank Guillemette (MRBoreal) for access and sampling of drillcore; Audrey Lavoie and Pape Doudou Tague for helping with LA-ICP-MS analytical procedures at LabMaTer, UQAC; Marc Choquette and Suzie Côté for their SEM, microprobe and uXRF work at Université Laval and André Poirier who helped with LA-ICP-MS data acquisition on zircons at GEOTOP, UQAM. The authors also thank the reviewers that revised the original version of the manuscript for their suggestions that helped to improve the paper.

Funding

This research was supported financially from the Fonds de recherche du Québec–Nature and Technologie (FRQNT) grant for new academics No 2020-NC-271033 and 2021-NC-309329 and the Canada Research Chair in Geochemistry Applied to Ore Deposits No CRC-2017-0286 of Sarah Dare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Miloski.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: F. Melcher

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Table 1 containing the U-Pb data was incorrectly replaced by the content of Table 7. The reference of “Fig. 5g” (page 9, line 2) is incorrect. The correct reference should be “Fig.4g”. The equation applying the REE content of apatite (page 25, line 7) is missed.

Supplementary information

ESM 1

(XLSX 1261 kb)

ESM 2

(PDF 338 kb)

ESM 3

(PDF 2266 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miloski, P., Dare, S., Morisset, CE. et al. Petrogenesis of Fe-Ti-P mineral deposits associated with Proterozoic anorthosite massifs in the Grenville Province: insights from oxide and apatite trace-element geochemistry at Lac à l’Orignal, Quebec, Canada. Miner Deposita 59, 519–556 (2024). https://doi.org/10.1007/s00126-023-01216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-023-01216-5

Keywords

Navigation