Skip to main content
Log in

Succinate dehydrogenase is essential for epigenetic and metabolic homeostasis in hearts

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

A hallmark of heart failure is a metabolic switch away from fatty acids β-oxidation (FAO) to glycolysis. Here, we show that succinate dehydrogenase (SDH) is required for maintenance of myocardial homeostasis of FAO/glycolysis. Mice with cardiomyocyte-restricted deletion of subunit b or c of SDH developed a dilated cardiomyopathy and heart failure. Hypertrophied hearts displayed a decrease in FAO, while glucose uptake and glycolysis were augmented, which was reversed by enforcing FAO fuels via a high-fat diet, which also improved heart failure of mutant mice. SDH-deficient hearts exhibited an increase in genome-wide DNA methylation associated with accumulation of succinate, a metabolite known to inhibit DNA demethylases, resulting in changes of myocardial transcriptomic landscape. Succinate induced DNA hypermethylation and depressed the expression of FAO genes in myocardium, leading to imbalanced FAO/glycolysis. Inhibition of succinate by α-ketoglutarate restored transcriptional profiles and metabolic disorders in SDH-deficient cardiomyocytes. Thus, our findings reveal the essential role for SDH in metabolic remodeling of failing hearts, and highlight the potential of therapeutic strategies to prevent cardiac dysfunction in the setting of SDH deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon reasonable request.

References

  1. Aguiar CJ, Rocha-Franco JA, Sousa PA, Santos AK, Ladeira M, Rocha-Resende C, Ladeira LO, Resende RR, Botoni FA, Barrouin Melo M, Lima CX, Carballido JM, Cunha TM, Menezes GB, Guatimosim S, Leite MF (2014) Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell Commun Signal 12:78. https://doi.org/10.1186/s12964-014-0078-2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alston CL, Ceccatelli Berti C, Blakely EL, Olahova M, He L, McMahon CJ, Olpin SE, Hargreaves IP, Nolli C, McFarland R, Goffrini P, O’Sullivan MJ, Taylor RW (2015) A recessive homozygous p.Asp92Gly SDHD mutation causes prenatal cardiomyopathy and a severe mitochondrial complex II deficiency. Hum Genet 134:869–879. https://doi.org/10.1007/s00439-015-1568-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anso E, Weinberg SE, Diebold LP, Thompson BJ, Malinge S, Schumacker PT, Liu X, Zhang Y, Shao Z, Steadman M, Marsh KM, Xu J, Crispino JD, Chandel NS (2017) The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol 19:614–625. https://doi.org/10.1038/ncb3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bezawork-Geleta A, Rohlena J, Dong L, Pacak K, Neuzil J (2017) Mitochondrial complex II: at the crossroads. Trends Biochem Sci 42:312–325. https://doi.org/10.1016/j.tibs.2017.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boylston JA, Sun J, Chen Y, Gucek M, Sack MN, Murphy E (2015) Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 88:73–81. https://doi.org/10.1016/j.yjmcc.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burridge PW, Sharma A, Wu JC (2015) Genetic and epigenetic regulation of human cardiac reprogramming and differentiation in regenerative medicine. Annu Rev Genet 49:461–484. https://doi.org/10.1146/annurev-genet-112414-054911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–435. https://doi.org/10.1038/nature13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davili Z, Johar S, Hughes C, Kveselis D, Hoo J (2007) Succinate dehydrogenase deficiency associated with dilated cardiomyopathy and ventricular noncompaction. Eur J Pediatr 166:867–870. https://doi.org/10.1007/s00431-006-0310-1

    Article  PubMed  Google Scholar 

  9. Dehghan M, Mente A, Zhang X, Swaminathan S, Li W, Mohan V, Iqbal R, Kumar R, Wentzel-Viljoen E, Rosengren A, Amma LI, Avezum A, Chifamba J, Diaz R, Khatib R, Lear S, Lopez-Jaramillo P, Liu X, Gupta R, Mohammadifard N, Gao N, Oguz A, Ramli AS, Seron P, Sun Y, Szuba A, Tsolekile L, Wielgosz A, Yusuf R, Hussein Yusufali A, Teo KK, Rangarajan S, Dagenais G, Bangdiwala SI, Islam S, Anand SS, Yusuf S, Prospective Urban Rural Epidemiology study i (2017) Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet 390:2050–2062. https://doi.org/10.1016/S0140-6736(17)32252-3

    Article  CAS  PubMed  Google Scholar 

  10. Guo Y, Wang Z, Qin X, Xu J, Hou Z, Yang H, Mao X, Xing W, Li X, Zhang X, Gao F (2018) Enhancing fatty acid utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing optic atrophy 1 processing in the failing heart. Cardiovasc Res 114:979–991. https://doi.org/10.1093/cvr/cvy052

    Article  CAS  PubMed  Google Scholar 

  11. Hou T, Zhang R, Jian C, Ding W, Wang Y, Ling S, Ma Q, Hu X, Cheng H, Wang X (2019) NDUFAB1 confers cardio-protection by enhancing mitochondrial bioenergetics through coordination of respiratory complex and supercomplex assembly. Cell Res 29:754–766. https://doi.org/10.1038/s41422-019-0208-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jain-Ghai S, Cameron JM, Al Maawali A, Blaser S, MacKay N, Robinson B, Raiman J (2013) Complex II deficiency–a case report and review of the literature. Am J Med Genet A 161A:285–294. https://doi.org/10.1002/ajmg.a.35714

    Article  PubMed  Google Scholar 

  13. Kolwicz SC Jr, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 113:603–616. https://doi.org/10.1161/CIRCRESAHA.113.302095

    Article  CAS  PubMed  Google Scholar 

  14. Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, Janin M, Menara M, Nguyen AT, Benit P, Buffet A, Marcaillou C, Bertherat J, Amar L, Rustin P, De Reynies A, Gimenez-Roqueplo AP, Favier J (2013) SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23:739–752. https://doi.org/10.1016/j.ccr.2013.04.018

    Article  CAS  PubMed  Google Scholar 

  15. Letts JA, Sazanov LA (2017) Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol 24:800–808. https://doi.org/10.1038/nsmb.3460

    Article  CAS  PubMed  Google Scholar 

  16. Levitas A, Muhammad E, Harel G, Saada A, Caspi VC, Manor E, Beck JC, Sheffield V, Parvari R (2010) Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase. Eur J Hum Genet 18:1160–1165. https://doi.org/10.1038/ejhg.2010.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Milenkovic D, Blaza JN, Larsson NG, Hirst J (2017) The enigma of the respiratory chain supercomplex. Cell Metab 25:765–776. https://doi.org/10.1016/j.cmet.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  18. Oeing CU, Pepin ME, Saul KB, Agircan AS, Assenov Y, Merkel TS, Sedaghat-Hamedani F, Weis T, Meder B, Guan K, Plass C, Weichenhan D, Siede D, Backs J (2023) Indirect epigenetic testing identifies a diagnostic signature of cardiomyocyte DNA methylation in heart failure. Basic Res Cardiol 118:9. https://doi.org/10.1007/s00395-022-00954-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prag HA, Murphy MP, Krieg T (2023) Preventing mitochondrial reverse electron transport as a strategy for cardioprotection. Basic Res Cardiol 118:34. https://doi.org/10.1007/s00395-023-01002-4

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sadhukhan S, Liu X, Ryu D, Nelson OD, Stupinski JA, Li Z, Chen W, Zhang S, Weiss RS, Locasale JW, Auwerx J, Lin H (2016) Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci U S A 113:4320–4325. https://doi.org/10.1073/pnas.1519858113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schulz R, Heusch G (2022) Targeted mito- and cardioprotection by malonate. Circ Res 131:542–544. https://doi.org/10.1161/CIRCRESAHA.122.321582

    Article  CAS  PubMed  Google Scholar 

  22. Shang W, Gao H, Lu F, Ma Q, Fang H, Sun T, Xu J, Ding Y, Lin Y, Wang Y, Wang X, Cheng H, Zheng M (2016) Cyclophilin D regulates mitochondrial flashes and metabolism in cardiac myocytes. J Mol Cell Cardiol 91:63–71. https://doi.org/10.1016/j.yjmcc.2015.10.036

    Article  CAS  PubMed  Google Scholar 

  23. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129. https://doi.org/10.1152/physrev.00006.2004

    Article  CAS  PubMed  Google Scholar 

  24. Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043–1057. https://doi.org/10.1016/j.cell.2005.05.025

    Article  CAS  PubMed  Google Scholar 

  25. Vercellino I, Sazanov LA (2022) The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol 23:141–161. https://doi.org/10.1038/s41580-021-00415-0

    Article  CAS  PubMed  Google Scholar 

  26. Wai T, Garcia-Prieto J, Baker MJ, Merkwirth C, Benit P, Rustin P, Ruperez FJ, Barbas C, Ibanez B, Langer T (2015) Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350:aad0116. https://doi.org/10.1126/science.aad0116

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Zhang X, Cao K, Zeng M, Fu X, Zheng A, Zhang F, Gao F, Zou X, Li H, Li M, Lv W, Xu J, Long J, Zang W, Chen J, Gao F, Ding J, Liu J, Feng Z (2022) Cardiac disruption of SDHAF4-mediated mitochondrial complex II assembly promotes dilated cardiomyopathy. Nat Commun 13:3947. https://doi.org/10.1038/s41467-022-31548-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, Liu L, Liu Y, Yang C, Xu Y, Zhao S, Ye D, Xiong Y, Guan KL (2012) Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26:1326–1338. https://doi.org/10.1101/gad.191056.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30. https://doi.org/10.1016/j.ccr.2010.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang SJ, Wang C, Yan S, Fu A, Luan X, Li Y, Sunny Shen Q, Zhong X, Chen JY, Wang X, Chin-Ming Tan B, He A, Li CY (2017) Isoform evolution in primates through independent combination of alternative RNA processing events. Mol Biol Evol 34:2453–2468. https://doi.org/10.1093/molbev/msx212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Y, Taufalele PV, Cochran JD, Robillard-Frayne I, Marx JM, Soto J, Rauckhorst AJ, Tayyari F, Pewa AD, Gray LR, Teesch LM, Puchalska P, Funari TR, McGlauflin R, Zimmerman K, Kutschke WJ, Cassier T, Hitchcock S, Lin K, Kato KM, Stueve JL, Haff L, Weiss RM, Cox JE, Rutter J, Taylor EB, Crawford PA, Lewandowski ED, Des Rosiers C, Abel ED (2020) Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nat Metab 2:1248–1264. https://doi.org/10.1038/s42255-020-00288-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng M, Cheng H, Li X, Zhang J, Cui L, Ouyang K, Han L, Zhao T, Gu Y, Dalton ND, Bang ML, Peterson KL, Chen J (2009) Cardiac-specific ablation of Cypher leads to a severe form of dilated cardiomyopathy with premature death. Hum Mol Genet 18:701–713. https://doi.org/10.1093/hmg/ddn400

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Wei Xu for mass spectrometry analysis; Dr. Yuli Liu for echocardiography; Dr. Lin Pan and Dr. Dongwei Ma for histology; Dr. Chuanyun Li and Dr. Jiguang Peng for bioinformatics analysis; Dr. Aibin He, Dr. Ruiping Xiao, and Dr. Yan Zhang for comments. This work was supported by the National Key Basic Research Program of China (2017YFA0504000 and 2016YFA0500403) and the National Science Foundation of China (32293211, 8182780030, 31821091 and 31971158).

Funding

National Key Basic Research Program of China, 2017YFA0504000, Heping Cheng, 2016YFA0500403, Heping Cheng, the National Science Foundation of China, 31770201, Heping Cheng, 31821091, Heping Cheng, 31971158, Heping Cheng, he National Science Foundation of China, 8182780030, Heping Cheng

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3337 KB)

Supplementary file2 (DOCX 39 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Quan, L., Peng, K. et al. Succinate dehydrogenase is essential for epigenetic and metabolic homeostasis in hearts. Basic Res Cardiol 118, 45 (2023). https://doi.org/10.1007/s00395-023-01015-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-023-01015-z

Keywords

Navigation