Skip to main content
Log in

The Role of Stresses in High-Temperature Corrosion: The Potential of Quantitative Approaches

  • Review
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

A Correction to this article was published on 28 October 2023

This article has been updated

Abstract

The type and kinetics of high-temperature corrosion can significantly be affected by the presence of stresses in the oxide scale/material system. There have been numerous research activities dealing with the role of stresses in high-temperature corrosion, but the knowledge is widely scattered in a large number of individual publications, and a systematic evaluation and comprehensive revision of this knowledge seems to be of great benefit, not least under the aspect of its industrial exploitation for design and life-time assessment procedures. The latter is becoming of increasing interest also against the background of rising activities in material science and corrosion based on the application of artificial intelligence (AI) approaches. The paper addresses the origin of stresses and the reaction of the material system on these stresses under high-temperature corrosion conditions. As a key factor for high-temperature corrosion resistance, the integrity of the protective oxide scale, its endangering by stresses and the role of the scale healing capacity are addressed. Furthermore, the situation after the loss of the protective effect of the oxide scale is regarded. For a systematic treatment, the discussion occurs along the lines of the corrosion stress interaction diagram (CSID) and of the advanced oxide scale failure diagram (AOSFD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All information used in this review have been taken from the publications given in the reference list and can be found in the respective publications.

Change history

References

  1. P. Kofstad, High Temperature Corrosion. (London, UK: Elsevier Applied Science, 1988).

  2. G. Y. Lai, High-Temperature Corrosion of Engineering Alloys. (Materials Park, OH: ASM International, 1990).

  3. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High Temperature Oxidation of Metals. (Cambridge, UK: Cambridge University Press, 2006).

  4. B. Cottis, M. Graham, R. Lindsay, et al., Shreir’s Corrosion, (Elsevier Science, Amsterdam, Netherlands, 2010).

    Google Scholar 

  5. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier Science, Amsterdam, Netherlands, 2016).

    Google Scholar 

  6. M. Bortz, K. Dadhe, S. Engell, et al., Chemie Ingenieur Technik 95, 975 (2023).

    Article  CAS  Google Scholar 

  7. L. B. Coelho, D. Zhang, Y. van Ingelhem, et al., npj Materials Degradation 6, 8 (2022).

    Article  Google Scholar 

  8. R. Indranil, F. Bojun, R. Subhrajit, et al., MRS Communications 13, 82 (2023).

    Article  Google Scholar 

  9. J. Peng, R. Pillai, M. Romedenne, et al., npj Materials Degradation 5, 41 (2021).

    Article  CAS  Google Scholar 

  10. M. K. Anirudh, M. SreenidhiIyengar, A. Desik, and M. P. Phanira, Oxidation of Metals 98, 291 (2022).

    Article  CAS  Google Scholar 

  11. M. Schütze, Protective Oxide Scales and Their Breakdown, (John Wiley and Sons, Chichester, UK, 1997).

    Google Scholar 

  12. M. Schütze, Oxidation of Metals 25, 409 (1986).

    Article  Google Scholar 

  13. N. B. Pilling and R. E. Bedworth, Journal of Institute of Metals 29, 529 (1923).

    Google Scholar 

  14. H. L. Bernstein, Metallurgical Transactions 18A, 975 (1987).

    Article  CAS  Google Scholar 

  15. A. M. Huntz, Material Science and Engineering A201, 211 (1995).

    Article  CAS  Google Scholar 

  16. D. A. Vermilyea, Acta Metallurgica 5, 492 (1957).

    Article  CAS  Google Scholar 

  17. M. I. Manning, Corrosion Science 21, 301 (1981).

    Article  CAS  Google Scholar 

  18. H. Steiner, J. Konys, and M. Heck, Oxidation of Metals 66, 37 (2006).

    Article  CAS  Google Scholar 

  19. A. Rahmel, Werkstoffe und Korrosion 16, 837 (1965).

    Article  CAS  Google Scholar 

  20. M. Schütze, Failure of Oxide Scales on Advanced Materials due to the Presence of Stresses. in High Temperature Corrosion of Advanced Materials, eds. Y. Saito, B. Önay and T. Maruyama (Elsevier, Amsterdam, Netherlands, 1992), pp. 32–49.

    Google Scholar 

  21. F. N. Rhines and J. S. Wolf, Metallurgical Transactions 1, 1701 (1970).

    Article  CAS  Google Scholar 

  22. D. J. Srolovitz and T. A. Ramanarayanan, Oxidation of Metals 22, 133 (1984).

    Article  CAS  Google Scholar 

  23. F. H. Stott and A. Atkinson, Materials at High Temperatures 12, 195 (1994).

    Article  CAS  Google Scholar 

  24. A. M. Huntz and M. Schütze, Materials at High Temperatures 12, 151 (1994).

    Article  CAS  Google Scholar 

  25. D. Hovis, L. Hu, A. Reddy, et al., Journal of Materials Research 98, 1209 (2007).

    CAS  Google Scholar 

  26. P. Y. Hou, A. P. Paulikas, and B. W. Veal, Materials at High Temperatures 22, 535 (2005).

    Article  CAS  Google Scholar 

  27. S. R. J. Saunders, H. E. Evans, M. Li, et al., Oxidation of Metals 48, 189 (1997).

    Article  CAS  Google Scholar 

  28. P. F. Tortorelli, K. L. More, and E. D. Specht, et al, Microscopy of Oxidation 57 (2003).

  29. P. Y. Hou, A. P. Paulikas, and B. W. Veal, Materials Science Forum 461–464, 671 (2004).

    Article  Google Scholar 

  30. P. Y. Hou, A. P. Paulikas, and B. W. Veal, Materials Science Forum 522–523, 433 (2006).

    Article  Google Scholar 

  31. D. Delaunay, A. M. Huntz, and P. Lacombe, Corrosion Science 20, 1109 (1980).

    Article  CAS  Google Scholar 

  32. S. Maharjan, X. Zhang, and Z. Wang, Oxidation of Metals 77, 93 (2012).

    Article  CAS  Google Scholar 

  33. W. Przybilla and M. Schütze, Oxidation of Metals 58, 337 (2002).

    Article  CAS  Google Scholar 

  34. J. Mougin, N. Rosman, G. Lucazeau, and A. Galerie, Journal of Raman Spectroscopy 32, 739 (2001).

    Article  CAS  Google Scholar 

  35. M. Kemdehoundja, J. L. Grosseau-Poussard, J. F. Dinhut, and B. Panicaud, Journal of Applied Physics 102, 493 (2007).

    Article  Google Scholar 

  36. W. Przybilla and M. Schütze, Oxidation of Metals 58, 103 (2002).

    Article  CAS  Google Scholar 

  37. A. M. Huntz, G. Calvari Amiri, H. E. Evans, and G. Cailletaud, Oxidation of Metals 57, 499 (2002).

    Article  CAS  Google Scholar 

  38. A. M. Huntz, Materials Science and Technology 4, 1079 (1988).

    Article  CAS  Google Scholar 

  39. A. Aubry, F. Armanet, G. Beranger, et al., Acta Metallurgica 36, 2779 (1988).

    Article  CAS  Google Scholar 

  40. E. D. Specht and P. F. Tortorelli, Advances in X-ray Analysis 47, 410 (2004).

    CAS  Google Scholar 

  41. E. D. Specht, P. F. Tortorelli, and P. Zschack, Role of Transitional Alumina in Growth Stress in Alumina Scale. ORNL Report 2013.

  42. I. Küppenbender and M. Schütze, Oxidation of Metals 42, 109 (1994).

    Article  Google Scholar 

  43. A. Atkinson, R. I. Taylor, and P. D. Goode, Oxidation of Metals 13, 519 (1979).

    Article  CAS  Google Scholar 

  44. H. V. Atkinson, Oxidation of Metals 24, 177 (1985).

    Article  CAS  Google Scholar 

  45. D. J. Young, T. D. Nguyen, P. Felfer, et al., Scripta Materialia 77, 29 (2014).

    Article  CAS  Google Scholar 

  46. D. J. Young, J. Zhang, C. Geers, and M. Schütze, Materials and Corrosion 62, 7 (2011).

    Article  CAS  Google Scholar 

  47. M. Schütze, Stress Effects in High Temperature Oxidation. in Reference Module in Materials Science and Materials Engineering, ed. S. Hashmi (Elsevier, Oxford, UK, 2016), p. 1.

    Google Scholar 

  48. J. J. Barnes, J. G. Goedjen, and D. A. Shores, Oxidation of Metals 32, 449 (1989).

    Article  CAS  Google Scholar 

  49. E. Metcalfe and M. I. Manning, The Spalling of Steam Grown Oxide from Austenitic and Ferritic Alloys (Report RD/L/R/1966). Leatherhead,UK: Central Electricity Generating Board CERL 1977.

  50. J. M. Ambrico, M. R. Begley, and E. H. Jordan, Acta Materialia 49, 1577 (2001).

    Article  CAS  Google Scholar 

  51. Stainless Steel 1.4762 (AISI 446) Material Data Sheet, www.ucpcdn.thyssenkrupp.com/_legacy/UPCthyssenkruppBAMXUK/assets.files/material-data-sheets/stainless-steel-1.4762.pdf

  52. Alloy 800 H/HP Material Data Sheet, https://www.vdm-metals.com/fileadmin/user_upload/Downloads/Data_Sheets/Datenblatt_VDM_Alloy_800_H_HP.pdf

  53. M. Schütze, S. Ito, W. Przybilla, et al., Materials at High Temperatures 18, 39 (2001).

    Article  Google Scholar 

  54. J. A. Haynes, B. A. Pint, W. D. Porter, and I. G. Wright, Materials at High Temperatures 21, 87 (2004).

    Article  CAS  Google Scholar 

  55. ISO 13573:2017. Corrosion of Metals and Alloys—Test Method for Thermal-Cycling Exposure Testing under High-Temperature Corrosion Conditions for Metallic Materials. Geneva, Switzerland: International Organization for Standardization; 2017.

  56. C. E. Lowell, C. A. Barrett, R. W. Palmer, et al., Oxidation of Metals 36, 81 (1991).

    Article  CAS  Google Scholar 

  57. J. L. Smialek and J. V. Auping, Oxidation of Metals 57, 559 (2002).

    Article  CAS  Google Scholar 

  58. U. R. Evans, Metallic Corrosion, Passivity and Protection. London, UK: Edward Arnold; 1937.

  59. U. R. Evans, An Introduction to Metallic Corrosion. London, UK: Edward Arnold; 1948.

  60. J. Armitt, D. R. Holmes, and M. I. Manning, et al. The spalling of steam grown oxide from superheater and reheater tube steels (EPRI report no. FP686). Palo Alto, USA: EPRI; 1978.

  61. M. Schütze, Corrosion Engineering, Science and Technology 48, 303 (2013).

    Article  Google Scholar 

  62. P. Hancock and J. R. Nicholls, Materials Science and Technology 4, 398 (1988).

    Article  CAS  Google Scholar 

  63. M. Schütze, P. F. Tortorelli, and I. G. Wright, Oxidation of Metals 73, 389 (2010).

    Article  Google Scholar 

  64. M. Rudolphi and M. Schütze, Oxidation of Metals 79, 167 (2013).

    Article  CAS  Google Scholar 

  65. M. Rudolphi and M. Schütze, Materials and Corrosion 68, 249 (2017).

    Article  CAS  Google Scholar 

  66. M. Rudolphi and M. Schütze, Oxidation of Metals 84, 45 (2015).

    Article  CAS  Google Scholar 

  67. M. Schütze and M. Rudolphi, Materials Science Forum 696, 138 (2011).

    Article  Google Scholar 

  68. J. L. Huang, K. Y. Zhou, J. Q. Xu, and C. X. Bian, Journal of Loss Prevention in the Process Industries 26, 22 (2013).

    Article  CAS  Google Scholar 

  69. D. P. Whittle, Oxidation of Metals 4, 171 (1972).

    Article  CAS  Google Scholar 

  70. P. Hancock, J. R. Nicholls, and K. Mahmood, Corrosion Science 35, 979 (1993).

    Article  CAS  Google Scholar 

  71. M. Schütze and A. Rahmel, Influence of Constant Strain Rates on Growth and Cracking Behavior of Oxide Scales and on Internal Corrosion of a 18Cr-0.8Al-1.5 Si Steel. In: Rapp RA, ed. Proceedings of High Temperature Corrosion 1983. Houston, USA: NACE;421–429.

  72. M. Schütze, Oxidation of Metals 52, 409 (1986).

    Article  Google Scholar 

  73. M. Schütze, Werkstoffe und Korrosion 38, 597 (1987).

    Article  Google Scholar 

  74. M. Schmitz-Niederau and M. Schütze, Oxidation of Metals 52, 241 (1999).

    Article  CAS  Google Scholar 

  75. C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).

    Article  CAS  Google Scholar 

  76. C. Wagner, Zeitschrift für Elektrochemie 63, 772 (1959).

    CAS  Google Scholar 

  77. R. Duan, A. Jalowicka, K. Unocic, et al., Oxidation of Metals 87, 11 (2017).

  78. Z. G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu, Corrosion Science 48, 741 (2006).

    Article  CAS  Google Scholar 

  79. R. C. Lobb and H. E. Evans, Corrosion Science 24, 385 (1984).

    Article  CAS  Google Scholar 

  80. T. Gheno, C. Desgranges, and L. Martinelli, Corrosion Science 173, 1 (2020).

    Article  Google Scholar 

  81. J. A. Nesbitt, Journal of the Electrochemical Society 136, 1511 (1989).

    Article  CAS  Google Scholar 

  82. B. D. Bastow, D. P. Whittle, and G. C. Wood, Oxidation of Metals 12, 413 (1978).

    Article  CAS  Google Scholar 

  83. G. Wallwork and A. Hed, Oxidation of Metals 3, 171 (1971).

    Article  CAS  Google Scholar 

  84. G. Meier, Materials Science and Engineering 120–121, 1 (1989).

    Google Scholar 

  85. K. N. Strafford, The Corrosion Behaviour of Alloys in High Temperature Gaseous Environments. In: Marriott JB, Merz M, Nihoul J, Ward J, eds.[ High Temperature Alloys. Dordrecht, Netherlands: Springer, 53; 1987.

  86. D. P. Whittle, Microstructure, Adhesion and Growth Kinetics of Protective Scales. in High Temperature Alloys for Gas Turbines, eds. D. Coutsouradis, P. Felix, L. Fischmeister, et al. (Applied Science Publishers, London, UK, 1978), pp. 109–123.

    Google Scholar 

  87. M. Schütze, G. T. Schmidt, and A. Naji, Materials and Corrosion 67, 13 (2016).

    Article  Google Scholar 

  88. G. L. Wulf, M. B. McGirr, and G. R. Wallwork, Corrosion Science 9, 739 (1969).

    Article  CAS  Google Scholar 

  89. J. Barbehön, A. Rahmel, and M. Schütze, Behavior of Alloy 800H Under Cyclic Deformation and Superimposed Oxidation. in High Temperature Alloys for Gas Turbines and Other Applications, eds. W. Betz, R. Brunetaud, D. Coutsouradis, et al. (D. Reidel Publishers, Dordrecht, Netherlands, 1986), pp. 1267–1277.

    Google Scholar 

  90. M. Bobeth, E. Bischoff, E. Schumann, et al., Corrosion Science 37, 657 (1995).

    Article  CAS  Google Scholar 

  91. M. Danielewski, R. Filipek, and B. Kucharska, Defect and Diffusion Forum 237–240, 965 (2005).

    Article  Google Scholar 

  92. J. A. Nesbitt, COSIM-A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated With Oxidation and Interdiffusion of Overlay–Coated Substrates. NASA-Report. Glenn Research Center, USA 2000: NASA/TM-2000–209271.

  93. C. Desgranges, F. Lequien, E. Aublant, et al., Oxidation of Metals 79, 93 (2013).

    Article  CAS  Google Scholar 

  94. W. M. Pragnell and H. E. Evans, Oxidation of Metals 66, 209 (2006).

    Article  CAS  Google Scholar 

  95. J. Hemptenmacher, G. Sauthoff, and H. J. Grabke, Werkstoffe und Korrosion 35, 247 (1984).

    Article  CAS  Google Scholar 

  96. H. W. Grünling, B. Ilschner, S. Leistikow, et al., Werkstoffe und Korrosion 29, 691 (1978).

    Article  Google Scholar 

  97. K. Sadananda and P. Shahinian, Materials Science and Engineering 43, 159 (1980).

    Article  CAS  Google Scholar 

  98. P. Shahinian and K. Sadananda, Engineering Aspects of Creep London, UK: The Institution of Mechanical Engineers 2, 1 (1980).

    Google Scholar 

  99. K. R. Bain and R. M. Pelloux, Metallurgical Transactions A 15, 381 (1984).

    Article  Google Scholar 

  100. W. Carpenter, B. S. J. Kang, and K. M. Chang, SAGBO Mechanism on High Temperature Cracking Behavior of Ni-base Superalloys. In: Loria EA, ed. Superalloys 718, 625, 706 and Various Derivatives 1997. Pittsburgh, USA: The Minerals, Metals and Materials Society;679–688.

  101. J. R. Nicholls, J. Samuel, R. C. Hurst, and P. Hancock, In: Kirman et al., eds. Behaviour of High Temperature Alloys in Aggressive Environments 1980. London, UK: The Metals Society;911.

  102. U. Bruch, K. Döhle, and J. Pütz, et al. Comparison of the Corrosion Behaviour of Different High Temperature Alloys With and Without Superimposed Creep Deformation in an Artificial Steam Reformer Atmosphere. In:. Proc. Conf. ICMC 1984. Ottawa, Canada: National Research Council Canada;3:325–329.

  103. S. Floreen and R. H. Kane, Metallurgical Transactions A 15, 5 (1984).

    Article  Google Scholar 

  104. H. Grünling and R. Bürgel, Werkstoffe und Korrosion 34, 527 (1983).

    Article  Google Scholar 

  105. H. H. Smith and D. J. Michel, Effect of Environment on Fatigue Crack Propagation Behavior of Alloy 718 at Elevated Temperatures. Metallurgical Transactions A 17, 1986 (370–374).

    Article  Google Scholar 

  106. M. Welker, A. Rahmel, and M. Schütze, Investigation of the Influence of Internal Nitridation on Creep Crack Growth in Alloy 800H. Metallurgical Transactions A 20, 1989 (1553–1560).

    Article  Google Scholar 

  107. V. M. Radhakrishnan, K. J. L. Iyer, and S. R. K. Iyer, Hot Corrosion Cracking of Stainless Steel. Werkstoffe und Korrosion 33, 1982 (461–466).

    Article  CAS  Google Scholar 

  108. S. Floreen and R. H. Kane, Effects of Environment on High Temperature Fatigue Crack Growth in a Superalloy. Metallurgical Transactions A 10, 1979 (1745–1751).

    Article  Google Scholar 

  109. S. Floreen and R. H. Kane, Metallurgical Transactions A 13, 1982 (145–152).

    Article  Google Scholar 

  110. Schütze M, Glaser B. The Influence of Cl-Containing Atmospheres on Creep Crack Growth at 800°C. In: Natesan K, Ganesan P, Lai GY, eds. Proc. 2nd International Conference on Heat-Resistant Materials 1995. Materials Park, USA: ASM International; 343–351

  111. M. Schütze, Anrissentstehung und Anrisswachstum unter korrosiven Bedingungen bei hohen Temperaturen. In Korrosion und Bruch 1988. Berlin, Germany: DVM; 279–289.

Download references

Acknowledgements

Thanks are due to Dr. Mario Rudolphi from DECHEMA-Forschungsinstitut in Frankfurt am Main, Germany, for reading the manuscript and for his helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written by M.S.

Corresponding author

Correspondence to Michael Schütze.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: due to Fig. 1 caption was inserted in the article's main text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schütze, M. The Role of Stresses in High-Temperature Corrosion: The Potential of Quantitative Approaches. High Temperature Corrosion of mater. 100, 365–397 (2023). https://doi.org/10.1007/s11085-023-10191-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10191-1

Keywords

Navigation