Skip to main content

Advertisement

Log in

Lung Microbiome as a Treatable Trait in Chronic Respiratory Disorders

  • LUNG MICROBIOME
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Once thought to be a sterile environment, it is now established that lungs are populated by various microorganisms that participate in maintaining lung function and play an important role in shaping lung immune surveillance. Although our comprehension of the molecular and metabolic interactions between microbes and lung cells is still in its infancy, any event causing a persistent qualitative or quantitative variation in the composition of lung microbiome, termed “dysbiosis”, has been virtually associated with many respiratory diseases. A deep understanding of the composition and function of the “healthy” lung microbiota and how dysbiosis can cause or participate in disease progression will be pivotal in finding specific therapies aimed at preventing diseases and restoring lung function. Here, we review lung microbiome dysbiosis in different lung pathologies and the mechanisms by which these bacteria can cause or contribute to the severity of the disease. Furthermore, we describe how different respiratory disorders can be caused by the same pathogen, and that the real pathogenetic mechanism is not only dependent by the presence and amount of the main pathogen but can be shaped by the interaction it can build with other bacteria, fungi, and viruses present in the lung. Understanding the nature of this bacteria crosstalk could further our understanding of each respiratory disease leading to the development of new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

URT:

Upper respiratory tract

LRT:

Lower respiratory tract

BE:

Bronchiectasis

CF:

Cystic fibrosis

COPD:

Chronic obstructive pulmonary disease

PDE:

Phosphodiesterase

CFTR:

Cystic fibrosis transmembrane regulator

AMP:

Antimicrobial peptide

BAL:

Bronchoalveolar lavage

SCLC:

Small cell lung cancer

NSCLC:

Non small cell lung cancer

EBC:

Exhaled breath condensate

References

  1. Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G (2017) Anticancer effects of the microbiome and its products. Nat Rev Microbiol 15(8):465–478

    Article  CAS  PubMed  Google Scholar 

  2. Huffnagle GB, Dickson RP, Lukacs NW (2017) The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol 10(2):299–306

    Article  CAS  PubMed  Google Scholar 

  3. Yagi K, Huffnagle GB, Lukacs NW, Asai N (2021) The lung microbiome during health and disease. Int J Mol Sci 22(19):1–13

    Article  Google Scholar 

  4. Chotirmall SH, Gellatly SL, Budden KF, Mac Aogain M, Shukla SD, Wood DLA et al (2017) Microbiomes in respiratory health and disease: an Asia-Pacific perspective. Respirology 22(2):240–250

    Article  PubMed  Google Scholar 

  5. Budden KF, Shukla SD, Rehman SF, Bowerman KL, Keely S, Hugenholtz P et al (2019) Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med 7(10):907–920

    Article  PubMed  Google Scholar 

  6. Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA et al (2011) Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS ONE 6(2):e16384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C et al (2010) Disordered microbial communities in asthmatic airways. PLoS ONE 5(1):e8578

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gomes S, Cavadas B, Ferreira JC, Marques PI, Monteiro C, Sucena M et al (2019) Profiling of lung microbiota discloses differences in adenocarcinoma and squamous cell carcinoma. Sci Rep 9(1):1–11

    Article  Google Scholar 

  9. Valverde-Molina J, García-Marcos L (2023) Microbiome and asthma: microbial dysbiosis and the origins, phenotypes, persistence, and severity of asthma. Nutrients 15(3):486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu T, Dong Y, Yang C, Zhao M, He Q (2021) Pathogenesis of children’s allergic diseases: refocusing the role of the gut microbiota. Front Physiol 12:1–10

    Article  Google Scholar 

  11. Natalini JG, Singh S, Segal LN (2023) The dynamic lung microbiome in health and disease. Nat Rev Microbiol 21:222–235

    Article  CAS  PubMed  Google Scholar 

  12. O’Dwyer DN, Ashley SL, Gurczynski SJ, Xia M, Wilke C, Falkowski NR et al (2019) Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir Crit Care Med 199(9):1127–1138

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dickson RP, Erb-Downward JR, Huffnagle GB (2013) The role of the bacterial microbiome in lung disease. Expert Rev Respir Med 7(3):245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Esposito V, Lucariello A, Savarese L, Cinelli MP, Ferraraccio F, Bianco A et al (2012) Morphology changes in human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM1.0) and pollen allergens. Environ Pollut 171:162–167

    Article  CAS  PubMed  Google Scholar 

  15. Brune K, Frank J, Schwingshackl A, Finigan J, Sidhaye VK (2015) Pulmonary epithelial barrier function: some new players and mechanisms. Am J Physiol-Lung Cell Mol Physiol 308(8):L731–L745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boccia M, Aronne L, Celia B, Mazzeo G, Ceparano M, D’Agnano V et al (2020) COVID-19 and coagulative axis: review of emerging aspects in a novel disease. Monaldi Arch Chest Dis. https://doi.org/10.4081/monaldi.2020.1300

    Article  PubMed  Google Scholar 

  17. Roca J, Vargas C, Cano I, Selivanov V, Barreiro E, Maier D et al (2014) Chronic obstructive pulmonary disease heterogeneity: challenges for health risk assessment, stratification and management. J Transl Med 12(Suppl 2):S3

    Article  PubMed  PubMed Central  Google Scholar 

  18. Prasetyo A, Sadhana U, Budiman J (2021) Nasal mucociliary clearance in smokers: A systematic review. Int Arch Otorhinolaryngol 25(1):160–169

    Article  Google Scholar 

  19. Sethi S, Maloney J, Grove L, Wrona C, Berenson CS (2006) Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173(9):991–998

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hirschmann JV (2000) Do bacteria cause exacerbations of COPD? Chest 118(1):193–203

    Article  CAS  PubMed  Google Scholar 

  21. Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE (2012) The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE 7(10):e47305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin L, Li J, Song Q, Cheng W, Chen P (2022) The role of HMGB1/RAGE/TLR4 signaling pathways in cigarette smoke-induced inflammation in chronic obstructive pulmonary disease. Immunity, Inflamm Dis 10(11):e711

    Article  CAS  Google Scholar 

  23. Gangemi S, Casciaro M, Trapani G, Quartuccio S, Navarra M, Pioggia G, et al (2015) Association between HMGB1 and COPD: a systematic review. Mediat Inflamm

  24. Alpkvist H, Athlin S, Mölling P, Norrby-Teglund A, Strålin K (2018) High HMGB1 levels in sputum are related to pneumococcal bacteraemia but not to disease severity in community-acquired pneumonia. Sci Rep 8(1):1–9

    Article  CAS  Google Scholar 

  25. Polosukhin VV, Cates JM, Lawson WE, Zaynagetdinov R, Milstone AP, Massion PP et al (2011) Bronchial secretory immunoglobulin a deficiency correlates with airway inflammation and progression of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 184(3):317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baraldo S, Turato G, Badin C, Bazzan E, Beghé B, Zuin R et al (2004) Neutrophilic infiltration within the airway smooth muscle in patients with COPD. Thorax 59(4):308–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sze MA, Dimitriu PA, Hayashi S, Elliott WM, McDonough JE, Gosselink JV et al (2012) The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185(10):1073–1080

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dang AT, Marsland BJ (2019) Microbes, metabolites, and the gut-lung axis. Mucosal Immunol 12(4):843–850

    Article  CAS  PubMed  Google Scholar 

  29. Chen L-W, Chen P-H, Hsu C-M (2011) Commensal microflora contribute to host defense against Escherichia coli pneumonia through Toll-like receptors. Shock 36(1):67–75

    Article  PubMed  Google Scholar 

  30. Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJTH, de Boer JD et al (2016) The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65(4):575–583

    Article  CAS  PubMed  Google Scholar 

  31. Sprooten RTM, Lenaerts K, Braeken DCW, Grimbergen I, Rutten EP, Wouters EFM et al (2018) Increased small intestinal permeability during severe acute exacerbations of COPD. Respiration 95(5):334–342

    Article  CAS  PubMed  Google Scholar 

  32. Qu L, Cheng Q, Wang Y, Mu H, Zhang Y (2022) COPD and gut-lung axis: how microbiota and host inflammasome influence COPD and related therapeutics. Front Microbiol 13:868086

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zou M, Zhang W, Xu Y, Zhu Y (2022) Relationship between COPD and GERD: a bibliometrics analysis. Int J Chron Obstruct Pulmon Dis 17:3045–3059

    Article  PubMed  PubMed Central  Google Scholar 

  34. Crowell MD, Zayat EN, Lacy BE, Schettler-Duncan A, Liu MC (2001) The effects of an inhaled beta(2)-adrenergic agonist on lower esophageal function: a dose-response study. Chest 120(4):1184–1189

    Article  CAS  PubMed  Google Scholar 

  35. Huang C, Liu Y, Shi G (2020) A systematic review with meta-analysis of gastroesophageal reflux disease and exacerbations of chronic obstructive pulmonary disease. BMC Pulm Med 20(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yu F, Huang Q, Ye Y, Zhang L (2022) Effectiveness of proton-pump inhibitors in chronic obstructive pulmonary disease: a meta-analysis of randomized controlled trials. Front Med 9:841155

    Article  Google Scholar 

  37. Agustí A, Celli BR, Criner GJ, Halpin D, Anzueto A, Barnes P et al (2023) Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Eur Respir J 61(4):2300239

    Article  PubMed  PubMed Central  Google Scholar 

  38. Contoli M, Pauletti A, Rossi MR, Spanevello A, Casolari P, Marcellini A et al (2017) Long-term effects of inhaled corticosteroids on sputum bacterial and viral loads in COPD. Eur Respir J 50(4):1700451

    Article  PubMed  Google Scholar 

  39. Carrera-Salinas A, González-Díaz A, Ehrlich RL, Berbel D, Tubau F, Pomares X et al (2023) Genetic adaptation and acquisition of macrolide resistance in Haemophilus spp. during persistent respiratory tract colonization in chronic obstructive pulmonary disease (COPD) Patients receiving long-term azithromycin treatment. Microbiol Spectr. 11(1):e0386022

    Article  PubMed  Google Scholar 

  40. Nigro E, Daniele A, Scudiero O, Monaco ML, Roviezzo F, D’Agostino B, Mazzarella G, Bianco A (2015) Adiponectin in asthma: implications for phenotyping. Curr Protein Pept Sci 16(3):182–187

    Article  CAS  PubMed  Google Scholar 

  41. Scherzer R, Grayson MH (2018) Heterogeneity and the origins of asthma. Ann Allergy Asthma Immunol 121(4):400–405

    Article  PubMed  PubMed Central  Google Scholar 

  42. Martinez FD, Guerra S (2018) Early origins of asthma role of microbial dysbiosis and metabolic dysfunction. Am J Respir Crit Care Med 197(5):573–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Durack J, Boushey HA, Lynch SV (2016) Airway microbiota and the implications of dysbiosis in asthma. Curr Allergy Asthma Rep 16(8)

  44. Loss GJ, Depner M, Hose AJ, Genuneit J, Karvonen AM, Hyvärinen A et al (2016) The early development of wheeze environmental determinants and genetic susceptibility at 17q21. Am J Respir Crit Care Med 193(8):889–897

    Article  PubMed  Google Scholar 

  45. Martín R, Heilig GHJ, Zoetendal EG, Smidt H, Rodríguez JM (2007) Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. J Appl Microbiol 103(6):2638–2644

    Article  PubMed  Google Scholar 

  46. Losol P, Park HS, Song WJ, Hwang YK, Kim SH, Holloway JW et al (2022) Association of upper airway bacterial microbiota and asthma: systematic review. Asia Pac Allergy 12(3):1–15

    Article  Google Scholar 

  47. Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N et al (2015) The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 17(5):704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jacquet A (2011) Interactions of airway epithelium with protease allergens in the allergic response. Clin Exp Allergy 41(3):305–311

    Article  CAS  PubMed  Google Scholar 

  49. Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD (2015) Asthma. Nat Rev Dis Prim 1:1–22

    Google Scholar 

  50. Petersen C, Round JL (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16(7):1024–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Denner DR, Sangwan N, Becker JB, Hogarth DK, Oldham J, Castillo J et al (2016) Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy Clin Immunol 137(5):1398–1405

    Article  CAS  PubMed  Google Scholar 

  52. Richardson H, Dicker AJ, Barclay H, Chalmers JD (2019) The microbiome in bronchiectasis. Eur Respir Rev 28(153):190048

    Article  PubMed  PubMed Central  Google Scholar 

  53. Purcell P, Jary H, Perry A, Perry JD, Stewart CJ, Nelson A et al (2014) Polymicrobial airway bacterial communities in adult bronchiectasis patients. BMC Microbiol 14(1):1–11

    Article  Google Scholar 

  54. King P (2011) Pathogenesis of bronchiectasis. Paediatr Respir Rev 12(2):104–110

    Article  PubMed  Google Scholar 

  55. Pasteur MC, Helliwell SM, Houghton SJ, Webb SC, Foweraker JE, Coulden RA et al (2000) An investigation into causative factors in patients with bronchiectasis. Am J Respir Crit Care Med 162(4I):1277–1284

    Article  CAS  PubMed  Google Scholar 

  56. Flume PA, Chalmers JD, Olivier KN (2018) Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet 392(10150):880–890

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tung JP, Fraser JF, Wood P, Fung YL (2009) Respiratory burst function of ovine neutrophils. BMC Immunol 10:1–11

    Article  Google Scholar 

  58. Whitters D, Stockley R (2012) Immunity and bacterial colonisation in bronchiectasis. Thorax 67(11):1006–1013

    Article  PubMed  Google Scholar 

  59. Martínez-García MA, Soler-Cataluña JJ, Perpiñá-Tordera M, Román-Sánchez P, Soriano J (2007) Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest 132(5):1565–1572

    Article  PubMed  Google Scholar 

  60. Byun MK, Chang J, Kim HJ, Jeong SH (2017) Differences of lung microbiome in patients with clinically stable and exacerbated bronchiectasis. PLoS ONE 12(8):1–18

    Article  Google Scholar 

  61. Rogers GB, Van Der Gast CJ, Cuthbertson L, Thomson SK, Bruce KD, Martin ML et al (2013) Clinical measures of disease in adult non-CF bronchiectasis correlate with airway microbiota composition. Thorax 68(8):731–737

    Article  PubMed  Google Scholar 

  62. Tunney MM, Einarsson GG, Wei L, Drain M, Klem ER, Cardwell C et al (2013) Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med 187(10):1118–1126

    Article  PubMed  PubMed Central  Google Scholar 

  63. Finch S, McDonnell MJ, Abo-Leyah H, Aliberti S, Chalmers JD (2015) A comprehensive analysis of the impact of pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Ann Am Thorac Soc 12(11):1602–1611

    PubMed  Google Scholar 

  64. Hill AT, Haworth CS, Aliberti S, Barker A, Blasi F, Boersma W et al (2017) Pulmonary exacerbation in adults with bronchiectasis: a consensus definition for clinical research. Eur Respir J 49(6)

  65. Cox MJ, Turek EM, Hennessy C, Mirza GK, James PL, Coleman M et al (2017) Longitudinal assessment of sputum microbiome by sequencing of the 16S rRNA gene in non-cystic fibrosis bronchiectasis patients. PLoS ONE 12(2):1–17

    Article  Google Scholar 

  66. Mac Aogáin M, Narayana JK, Tiew PY, Ali NABM, Yong VFL, Jaggi TK et al (2021) Integrative microbiomics in bronchiectasis exacerbations. Nat Med 27(4):688–699

    Article  PubMed  Google Scholar 

  67. Vanfleteren LEGW, Spruit MA, Wouters EFM, Franssen FME (2016) Management of chronic obstructive pulmonary disease beyond the lungs. Lancet Respir Med 4(11):911–924

    Article  PubMed  Google Scholar 

  68. Narayana JK, Aliberti S, Mac Aogáin M, Jaggi TK, Ali NABM, Ivan FX et al (2023) Microbial dysregulation of the gut-lung axis in bronchiectasis. Am J Respir Crit Care Med 207(7):908–920

    Article  CAS  PubMed  Google Scholar 

  69. Narayana JK, Aliberti S, Aogáin MM, Jaggi TK, Ali NABM, Xaverius IF et al (2022) Dysregulation of the microbial ‘gut-lung’ axis in bronchiectasis. Eur Respir J 60(Suppl 66):1646

    Google Scholar 

  70. Koh W-J, Lee JH, Kwon YS, Lee KS, Suh GY, Chung MP et al (2007) Prevalence of gastroesophageal reflux disease in patients with nontuberculous mycobacterial lung disease. Chest 131(6):1825–1830

    Article  PubMed  Google Scholar 

  71. Ahn B, Lee DH, Lee CM, Hwang JJ, Yoon H, Shin CM et al (2016) Effect of proton pump inhibitors in bronchiectatic patients with gastroesophageal reflux disease. Korean J Gastroenterol 68(1):10–15

    Article  PubMed  Google Scholar 

  72. Altenburg J, de Graaff CS, Stienstra Y, Sloos JH, van Haren EH, Koppers RJ et al (2013) Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 309(12):1251–1259

    Article  CAS  PubMed  Google Scholar 

  73. Malhotra S, Hayes D, Wozniak DJ (2019) Cystic fibrosis and pseudomonas aeruginosa: the host-microbe interface. Clin Microbiol Rev 32(3):1–46

    Article  Google Scholar 

  74. Françoise A, Héry-Arnaud G (2020) The microbiome in cystic fibrosis pulmonary disease. Genes 11(5):536

    Article  PubMed  PubMed Central  Google Scholar 

  75. Scialo F, Amato F, Cernera G, Gelzo M, Zarrilli F, Comegna M et al (2021) Lung microbiome in cystic fibrosis. Life 11(2):1–7

    Article  Google Scholar 

  76. Shah VS, Meyerholz DK, Tang XX, Reznikov L, Alaiwa MA, Ernst SE et al (2016) Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 351(6272):503–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO et al (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487(7405):109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Scudiero O, Galdiero S, Cantisani M, Di Noto R, Vitiello M, Galdiero M et al (2010) Novel synthetic, salt-resistant analogs of human beta-defensins 1 and 3 endowed with enhanced antimicrobial activity. Antimicrob Agents Chemother 54(6):2312–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carnovale V, Castaldo A, Di Minno A, Gelzo M, Iacotucci P, Illiano A et al (2022) Oxylipin profile in saliva from patients with cystic fibrosis reveals a balance between pro-resolving and pro-inflammatory molecules. Sci Rep 12(1):1–10

    Article  Google Scholar 

  80. Castaldo A, Iacotucci P, Carnovale V, Cimino R, Liguori R, Comegna M et al (2020) Salivary cytokines and airways disease severity in patients with cystic fibrosis. Diagnostics 10(4):222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Crovella S, Segat L, Amato A, Athanasakis E, Bezzerri V, Braggion C et al (2011) A polymorphism in the 5’ UTR of the DEFB1 gene is associated with the lung phenotype in F508del homozygous Italian cystic fibrosis patients. Clin Chem Lab Med 49(1):49–54

    Article  CAS  PubMed  Google Scholar 

  82. Tomaiuolo R, Ruocco A, Salapete C, Carru C, Baggio G, Franceschi C et al (2012) Activity of mannose-binding lectin in centenarians. Aging Cell 11(3):394–400

    Article  CAS  PubMed  Google Scholar 

  83. Castaldo A, Cernera G, Iacotucci P, Cimbalo C, Gelzo M, Comegna M et al (2020) TAS2R38 is a novel modifier gene in patients with cystic fibrosis. Sci Rep 10(1):5–10

    Article  Google Scholar 

  84. Hogan DA, Willger SD, Dolben EL, Hampton TH, Stanton B, Morrison HG et al (2016) Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with Mild-To- Moderate cystic fibrosis lung disease. PLoS ONE 11(3):1–23

    Article  Google Scholar 

  85. Rieber N, Hector A, Carevic M, Hartl D (2014) Current concepts of immune dysregulation in cystic fibrosis. Int J Biochem Cell Biol 52:108–112

    Article  CAS  PubMed  Google Scholar 

  86. Klepac-Ceraj V, Lemon KP, Martin TR, Allgaier M, Kembel SW, Knapp AA et al (2010) Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ Microbiol 12(5):1293–1303

    Article  CAS  PubMed  Google Scholar 

  87. Keravec M, Mounier J, Guilloux CA, Fangous MS, Mondot S, Vallet S et al (2019) Porphyromonas, a potential predictive biomarker of Pseudomonas aeruginosa pulmonary infection in cystic fibrosis. BMJ Open Respir Res 6(1):1–5

    Article  Google Scholar 

  88. Van Der Gast CJ, Walker AW, Stressmann FA, Rogers GB, Scott P, Daniels TW et al (2011) Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J 5(5):780–791

    Article  PubMed  Google Scholar 

  89. Keravec M, Mounier J, Prestat E, Vallet S, Jansson JK, Burgaud G et al (2015) Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization. Springerplus 4(1):1–8

    Article  Google Scholar 

  90. Goss CH, Burns JL (2007) Exacerbations in cystic fibrosis·1: epidemiology and pathogenesis. Thorax 62(4):360–367

    Article  PubMed  PubMed Central  Google Scholar 

  91. Coburn B, Wang PW, Diaz Caballero J, Clark ST, Brahma V, Donaldson S et al (2015) Lung microbiota across age and disease stage in cystic fibrosis. Sci Rep 5:1–12

    Article  Google Scholar 

  92. Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF et al (2012) Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA 109(15):5809–5814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Goddard AF, Staudinger BJ, Dowd SE, Joshi-Datar A, Wolcott RD, Aitken ML et al (2012) Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci USA 109(34):13769–13774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Whelan FJ, Surette MG (2015) Clinical insights into pulmonary exacerbations in cystic fibrosis from the microbiome what are we missing? Ann Am Thorac Soc 12(6):S207–S211

    Article  PubMed  Google Scholar 

  95. Fonseca C, Bicker J, Alves G, Falcão A, Fortuna A (2020) Cystic fibrosis: physiopathology and the latest pharmacological treatments. Pharmacol Res 162:105267

    Article  CAS  PubMed  Google Scholar 

  96. Heirali AA, Acosta N, Storey DG, Workentine ML, Somayaji R, Laforest-Lapointe I et al (2019) The effects of cycled inhaled aztreonam on the cystic fibrosis (CF) lung microbiome. J Cyst Fibros 18(6):829–837

    Article  CAS  PubMed  Google Scholar 

  97. Perrotta F, Rocco D, Vitiello F, De Palma R, Guerra G, De Luca A et al (2019) Immune checkpoint blockade for advanced NSCLC: a new landscape for elderly patients. Int J Mol Sci 20(9):2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nigro E, Perrotta F, Monaco ML, Polito R, Pafundi PC, Matera MG et al (2020) Implications of the adiponectin system in non-small cell lung cancer patients: a case-control study. Biomolecules 10(6):926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stella GM, Scialò F, Bortolotto C, Agustoni F, Sanci V, Saddi J et al (2022) Pragmatic expectancy on microbiota and non-small cell lung cancer: a narrative review. Cancers 14(13):3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nigro E, Perrotta F, Scialò F, D’Agnano V, Mallardo M, Bianco A et al (2021) Food, nutrition, physical activity and microbiota: which impact on lung cancer? Int J Environ Res Public Health 18(5):2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dong Q, Chen ES, Zhao C, Jin C (2021) Host-microbiome interaction in lung cancer. Front Immunol 12:1–9

    Article  Google Scholar 

  102. Mao Q, Jiang F, Yin R, Wang J, Xia W, Dong G et al (2018) Interplay between the lung microbiome and lung cancer. Cancer Lett 415:40–48

    Article  CAS  PubMed  Google Scholar 

  103. Bianco A, Malapelle U, Rocco D, Perrotta F, Mazzarella G (2018) Targeting immune checkpoints in non small cell lung cancer. Curr Opin Pharmacol 40:46–50

    Article  CAS  PubMed  Google Scholar 

  104. Bachem A, Makhlouf C, Binger KJ, de Souza DP, Tull D, Hochheiser K et al (2019) Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51(2):285–329

    Article  CAS  PubMed  Google Scholar 

  105. Holmes E, Li JV, Marchesi JR, Nicholson JK (2012) Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 16(5):559–564

    Article  CAS  PubMed  Google Scholar 

  106. McLean AEB, Kao SC, Barnes DJ, Wong KKH, Scolyer RA, Cooper WA et al (2022) The emerging role of the lung microbiome and its importance in non-small cell lung cancer diagnosis and treatment. Lung Cancer 165:124–132

    Article  CAS  PubMed  Google Scholar 

  107. Tsay JCJ, Wu BG, Badri MH, Clemente JC, Shen N, Meyn P et al (2018) Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med 198(9):1188–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yu G, Gail MH, Consonni D, Carugno M, Humphrys M, Pesatori AC et al (2016) Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol 17(1):1–12

    Article  Google Scholar 

  109. Dickson RP, Martinez FJ, Huffnagle GB (2014) The role of the microbiome in exacerbations of chronic lung diseases. Lancet 384(9944):691–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM, Huffnagle GB et al (2015) Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc 12(6):821–830

    Article  PubMed  PubMed Central  Google Scholar 

  111. Goto T (2020) Airway microbiota as a modulator of lung cancer. Int J Mol Sci 21(9):3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yan X, Yang M, Liu J, Gao R, Hu J, Li J et al (2015) Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res 5(10):3111–3122

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Erb-Downward JR, Falkowski NR, D’souza JC, McCloskey LM, McDonald RA, Brown CA et al (2020) Critical relevance of stochastic effects on low-bacterialbiomass 16s rrna gene analysis. MBio 11(3):1–12

    Article  Google Scholar 

  114. D’Agnano V, Scialò F, Perna F, Atripaldi L, Sanduzzi S, Allocca V et al (2022) Exploring the role of Krebs von den Lungen-6 in severe to critical COVID-19 patients. Life 12:1141

    Article  PubMed  PubMed Central  Google Scholar 

  115. Pattaroni C, Watzenboeck ML, Schneidegger S, Kieser S, Wong NC, Bernasconi E et al (2018) Early-life formation of the microbial and immunological environment of the human airways. Cell Host Microbe 24(6):857–865

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There are no funding to associate to this work.

Author information

Authors and Affiliations

Authors

Contributions

AB: Conceptualization. VD, DM: Software. FS, MV, AC, SFMC, FP: Writing—original draft preparation, AB, MC, LP, SFMC, FS: Writing—review and editing; visualization, FS, VD, DM. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Andrea Bianco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scialò, F., Vitale, M., D’Agnano, V. et al. Lung Microbiome as a Treatable Trait in Chronic Respiratory Disorders. Lung 201, 455–466 (2023). https://doi.org/10.1007/s00408-023-00645-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-023-00645-3

Keywords

Navigation