Skip to main content
Log in

What Is Common between Ecology and Nuclear Physics: A Random Matrix Model for the Distribution of Trees in a Stand by Inventory Data

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The interactions between trees in a forest are manifested in a decrease in phytomass growth and the weakening and disappearance of some trees. One of the ways to identify the nature of the relationship between trees in a forest is to study the current functions of distribution of trees in the stand in terms of height and trunk diameter. In this case, various functions are used for description: gamma function, normal and logarithmically normal functions, Weibull function, etc. To theoretically substantiate the choice of a particular distribution to describe the diameters and heights of trees in a stand, in this paper, it is proposed to use the Gaussian Orthogonal Ensemble (GOE) model used in nuclear physics to describe the distribution of energy levels of atomic nuclei and to characterize interactions in chaotic systems. It is shown that the interactions both in the atomic nucleus and in the forest stand can be described by a general model. To describe the taxation indicators of trees, the characteristics of reciprocal heights and diameters are introduced. The GOE model for the forest stand was verified according to the inventory data. It is shown that the parameters of the normalized GOE model do not depend on the age of the stand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Bailey, R.L. and Dell, T.R., Quantifying diameter distribution with the Weibull function, For. Sci., 1973, vol. 19, no. 2, pp. 97–104.

    Google Scholar 

  2. Bredford, S.C., The documentary chaos, in Documentation, Bredford, S.C., Ed., London: Crosby Lockwood, 1948, pp. 106–121.

    Google Scholar 

  3. Buzykin, A.I., Sekretenko, O.P., and Khlebopros, R.G., Dannye nablyudenii i analiz gorizontal’noi struktury na pyati probnykh ploshchadyakh v odnovozrastnykh drevesnykh tsenozakh (Observational Data and Analysis of the Horizontal Structure on Five Sample Plots in Coeval Tree Cenoses), Krasnoyarsk: Inst. Lesa im. V.N. Sukacheva Sib. Otd. Ross. Akad. Nauk, 2009.

  4. Cao, Q.V., Predicting parameters of a Weibull function for modelling diameter distribution, For. Sci., 2004, vol. 50, no. 5, pp. 682–685.

    Google Scholar 

  5. Darwin, Ch., On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, London: John Murray, 1859.

    Book  Google Scholar 

  6. De Lima, R.A.F., Batista, J.L.F., and Prado, P.I., Modeling tree diameter distributions in natural forests: An evaluation of 10 statistical models, For. Sci., 2015, vol. 61, pp. 320–327.

    Article  Google Scholar 

  7. Dwight, H.B., Tables of Integrals and Other Mathematical Data, New York: Macmillan, 1961.

    Google Scholar 

  8. Dyson, F.J., Statistical theory of the energy levels of complex systems, J. Math. Phys., 1962, vol. 3, pp. 140–175.

    Article  CAS  Google Scholar 

  9. Ek, A.R., Issos, J.N., and Bailey, R.L., Solving for Weibull diameter distribution parameters to obtain specifed mean diameters, For. Sci., 1975, vol. 21, pp. 290–292.

    Google Scholar 

  10. Fonseca, T.F., Marques, C.P., and Parresol, B.R., Describing maritime pine diameter distributions with Johnson’s SB distribution using a new all-parameter recovery approach, For. Sci., 2009, vol. 55, no. 4, pp. 367–373.

    Google Scholar 

  11. Ganina, N.V., Distribution of trees by diameter using the Weibull function, Lesovedenie, 1984, no. 2, pp. 17–19.

  12. Gnedenko, B.V., Kurs teorii veroyatnostei (Probability Course), Moscow: Nauka; Gl. Red. Fiz.-Mat. Lit., 1988.

  13. Gómez-Garcia, E., Crecente-Campo, F., Tobin, B., Hawkins, M., Nieuwenhuis, M., and Diéguez-Arenda, U., A dynamic volume and biomass growth models system for even-aged downy birch stands in south-western Europe, Forestry, 2014, vol. 87, pp. 165–176.

    Article  Google Scholar 

  14. Gorgoso-Varela, J.J. and Rojo-Alboreca, A., Short communication: A comparison of estimation methods for fitting Weibull and Johnson’s SB functions to pedunculate oak (Quercus robur) and birch (Betula pubescens) stands in northwest Spain, For. Syst., 2014, vol. 23, no. 3, pp. 500–505.

    Google Scholar 

  15. Gorgoso-Varela, J.J., Garcia-Villabrille, J.D., Rojo-Alboreca, A., Gadow, K., and Alvarez-Gonzalez, J.G., Comparing Johnson’s SBB, Weibull and Logit-Logistic bivariate distributions for modeling tree diameters and heights using copulas, For. Syst., 2016, vol. 25, no. 1, p. eSC07. https://doi.org/10.5424/fs/2016251-08487

    Article  Google Scholar 

  16. Jaworski, A. and Podlaski, R., Modelling irregular and multimodal tree diameter distributions by finite mixture models: An approach to stand structure characterization, J. For. Res., 2012, vol. 17, no. 1, pp. 79–88.

    Article  Google Scholar 

  17. Jin, X., Li, F., Jia, W., and Zhang, L., Modelling and predicting bivariate distributions of tree diameter and height, Sci. Silvae Sin., 2013, vol. 49, no. 6, pp. 74–82.

    Google Scholar 

  18. Kangas, A. and Maltamo, M., Performance of percentile based diameter distribution prediction and Weibull method in independent data sets, Silva Fennica, 2000, vol. 34, pp. 381–398.

    Article  Google Scholar 

  19. Lebkov, V.F., Dynamics of the pine trees distribution according to the morphometric parameters of the trunk and crown, Lesovedenie, 1990, no. 5, pp. 57–68.

  20. Lebkov, V.F. and Kaplina, N.F., Regularities and estimates of the structure of pine forest stands, Lesn. Khoz., 2008, no. 3, pp. 39–41.

  21. Lei, Y., Evaluation of three methods for estimating the Weibull distribution parameters of Chinese pine (Pinus tabulaeformis), J. For. Sci., 2008, vol. 54, pp. 566–571.

    Article  Google Scholar 

  22. Li, F., Zhang, L., and Davis, C.J., Modelling the joint distribution of tree diameters and heights by bivariate generalized beta distribution, For. Sci., 2002, vol. 48, no. 1, pp. 47–58.

    Google Scholar 

  23. Lin, C., Tsogt, K., and Zandraabal, T., A decompositional stand structure analysis for exploring stand dynamics of multiple attributes of a mixed-species forest, For. Ecol. Manage., 2016, vol. 378, pp. 111–121.

    Article  Google Scholar 

  24. Liu, F., Li, F., Zhang, L., and Jin, X., Modelling diameter distributions of mixed-species forest stands, Scand. J. For. Res., 2014, vol. 28, no. 7, pp. 653–663.

    Article  CAS  Google Scholar 

  25. Maltamo, M., Puumalainen, J., and Päivinen, R., Comparison of beta and Weibull functions for modelling basal area diameter distribution in stands of pinus sylvestris and picea abies, Scand. J. For. Res., 1995, vol. 10, pp. 284–295.

    Article  Google Scholar 

  26. Maltamo, M., Kangas, A., Uuttera, J., Torniainen, T., and Saramäki, J., Comparison of percentile based prediction methods and the Weibull distribution in describing the diameter distribution of heterogeneous Scots pine stands, For. Ecol. Manag., 2000, vol. 133, pp. 263–274.

    Article  Google Scholar 

  27. Malthus, T.R., An Essay on the Principle of Population, As It Affects the Future Improvement of Society, London: J. Johnson, 1798.

    Google Scholar 

  28. Mateus, A. and Tomé, M., Modeling the diameter distribution of Eucalyptus plantations with Johnson’s probability density function: Parameters recovery from a compatible system of equations to predict stand variables, Ann. For. Sci., 2011, vol. 68, pp. 325–335.

    Article  Google Scholar 

  29. Mehta, M.L., Random Matrices, Amsterdam: Elsevier, 2004.

    Google Scholar 

  30. Mehtätalo, L., de-Miguel, S., and Gregoire, T.G., Modelling height-diameter curves for prediction, Can. J. For. Res., 2015, vol. 45, pp. 826–837.

    Article  Google Scholar 

  31. Mergani, C.J. and Sterba, H., Characterisation of diameter distribution using the Weibull function: Method of moments, Eur. J. For. Res., 2006, vol. 125, pp. 427–439.

    Article  Google Scholar 

  32. Newton, P.F., Lei, Y., and Zhang, S.Y., A parameter recovery model for estimating black spruce diameter distributions within the context of a stand density management diagram, For. Chron., 2004, vol. 80, pp. 349–358.

    Article  Google Scholar 

  33. Nord-Larsen, T. and Cao, Q.V., A diameter distribution model for even-aged beech in denmark, For. Ecol. Manage., 2006, vol. 231, pp. 218–225.

    Article  Google Scholar 

  34. Ostreikovskii, V.A., Teoriya nadezhnosti (Reliability Theory), Moscow: Vysshaya Shkola, 2003.

  35. Ozcelik, R., Cao, Q.V., Trincado, G., and Nilsum, G., Predicting tree height from tree diameter and dominant height using mixed-effect and quantile regression models for two species in Turkey, For. Ecol. Manage., 2018, vols. 419–420, pp. 240–248.

    Article  Google Scholar 

  36. Palahí, M., Pukkala, T., Blasco, E., and Trasobares, A., Comparison of beta, Johnson’s SB, Weibull and truncated Weibull functions for modelling the diameter distribution of forest stands in Catalonia (north-east of Spain), Eur. J. For. Res., 2007, vol. 126, pp. 563–571.

    Article  Google Scholar 

  37. Pareto, V., Cours d’economie politique, Lausanne: F. Rouge, 1896.

    Google Scholar 

  38. Podlaski, R., Forest modelling: The gamma shape mixture model and simulation of tree diameter distributions, Ann. For. Sci., 2017, vol. 74, no. 2, pp. 29–39.

    Article  Google Scholar 

  39. Pogoda, P., Ochał, W., and Orzeł, S., Modeling diameter distribution of black alder (Alnus glutinosa (L.) Gaertn.) stands in Poland, Forests, 2019, vol. 10, pp. 412–428.

    Article  Google Scholar 

  40. Pollard, J.H., A Handbook of Numerical and Statistical Techniques, Cambridge: Cambridge Univ. Press, 1979. 368 p.

    Google Scholar 

  41. Poudel, K.P. and Cao, Q.V., Evaluation of methods to predict Weibull parameters for characterizing diameter distributions, For. Sci., 2013, vol. 59, no. 2, pp. 243–252.

    Article  Google Scholar 

  42. Ryzhkov, O.V., Distribution of trees by diameter in protected forests of the central forest-steppe, Lesovedenie, 2000, no. 5, pp. 43–52.

  43. Stockmann, H.-J., Quantum Chaos. An Introduction, Cambridge: Cambridge Univ. Press, 2007.

    Google Scholar 

  44. Sharma, R.P., Vacek, Z., Vacek, S., and Kucera, M., Modelling individual tree height-diameter relationships for multi-layered and multi-species forests in central Europe, Tree, 2019, vol. 33, no. 1, pp. 103–119.

    Article  Google Scholar 

  45. Shiver, B.D., Sample sizes and estimation methods for the Weibull distribution for unthinned slash pine plantation diameter distributions, For. Sci., 1988. vol. 34, pp. 809–814.

    Google Scholar 

  46. Soukhovolsky, V. and Ivanova, Y., Modeling production processes in forest stands: An adaptation of the Solow growth model, Forests, 2018, vol. 9, pp. 391–403.

    Article  Google Scholar 

  47. Soukhovolsky, V.G. and Kovalev, A.V., Modeling the coronavirus epidemic as a phase transition, Zh. Obshch. Biol., 2020, vol. 81, no. 5, pp. 362–373.

    Google Scholar 

  48. Soukhovolsky, V.G., Tarasova, O.V., and Kovalev, A.V., Modeling critical events in forest insect populations, Zh. Obshch. Biol., 2020, vol. 81, no. 5, pp. 374–386.

    Google Scholar 

  49. Stankova, T.V. and Zlatanov, T.M., Modelling diameter distribution of Austrian black pine (Pinus nigra Arn.) plantations: A comparison of the Weibull frequency distribution function and percentile-based projection methods, Eur. J. For. Res., 2010, vol. 129, pp. 1169–1179.

    Article  Google Scholar 

  50. Tret’yakov, N.V., Zakon edinstva v stroenii nasazhdenii (The Law of Uniformity in the Structure of Plantations), Moscow: Novaya Derevnya, 1927.

  51. Tsogt, K. and Lin, C., A flexible modelling of irregular diameter structure for the volume estimation of forest stands, J. For. Res., 2014, vol. 19, pp. 1–11.

    Article  Google Scholar 

  52. Usol’tsev, V.A., Produktsionnye pokazateli i konkurentnye otnosheniya derev’ev. Issledovanie zavisimostei (Production Indicators and Competitive Relations of Trees. Dependency Research), Yekaterinburg: Ural. Gos. Lesotekh. Univ., 2013.

  53. Van Laar, A. and Akca, A., Forest Mensuration, Dordrecht: Springer, 2007.

    Book  Google Scholar 

  54. Weibull, W., A statistical distribution function of wide applicability, J. Appl. Mech., 1951, vol. 18, pp. 293–297.

    Article  Google Scholar 

  55. Wigner, E.P., On the statistical distribution of the widths and spacing of nuclear resonance levels, Math. Proc. Cambridge Philos. Soc., 1951, vol. 47, pp. 790–798.

    Article  CAS  Google Scholar 

  56. Wigner, E.P., Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, New York: Academic, 1959.

  57. Yule, G.U., A mathematical theory of evolutionary based on conclusions of Dr. J.C. Willis, F.R.S, Philos. Trans. R. Soc., B, 1924, vol. 213, pp. 21–87.

  58. Zasada, M. and Cieszewski, C.J., A finite mixture distribution approach for characterizing tree diameter distributions by natural social class in pure even-aged Scots pine stand in Poland, For. Ecol. Manage., 2005, vol. 204, pp. 145–158.

    Article  Google Scholar 

  59. Zee, A., Quantum Field Theory in a Nutshell, Princeton, N.J.: Princeton Univ. Press, 2003.

    Google Scholar 

  60. Zhang, L., Gove, J.H., Liu, C., and Leak, W.B., A finite mixture of two Weibull distributions for modelling the diameter distributions of rotated-sigmoid, uneven-aged stands, Can. J. For. Res., 2001, vol. 31, pp. 1654–1659.

    Article  Google Scholar 

  61. Zhang, L., Kevin, C.P., and Chuanmin, L., A comparison of estimation methods for fitting Weibull and Johnson’s SB distributions to mixed spruce-fir stands in north-eastern North America, Can. J. For. Res., 2003, vol. 33, pp. 1340–1347.

    Article  Google Scholar 

  62. Zhang, L. and Liu, C., Fitting irregular diameter distributions of forest stands by Weibull, modified Weibull, and mixture Weibull models, J. For. Res., 2006, vol. 11, pp. 369–372.

    Article  Google Scholar 

  63. Zhang, X. and Lei, Y., A linkage among whole-stand model, individual-tree model and diameter-distribution model, J. For. Sci., 2010, vol. 56, pp. 600–608.

    Article  Google Scholar 

  64. Zipf, G.K., Human Behaviour and the Principle of Least Effort, Cambridge: Addison-Wesley, 1949.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Soukhovolsky.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of humans or animals. The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soukhovolsky, V.G., Ivanova, Y.D. & Tarasova, O.V. What Is Common between Ecology and Nuclear Physics: A Random Matrix Model for the Distribution of Trees in a Stand by Inventory Data. Biol Bull Rev 13, 397–407 (2023). https://doi.org/10.1134/S2079086423050067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086423050067

Navigation