Skip to main content

Advertisement

Log in

The Role of O2 and H2O Impurities in Dictating the Oxidation Mechanism and Protective Capacity of 9Cr Steels in Hot CO2

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

The initial stages of oxidation of 9Cr steel in CO2, O2, CO2–O2 and CO2–O2–H2O is studied by gas phase analysis (GPA) at 550 °C using 13C16,16O2, 18,18O2 and 2H216O isotopic molecules in order to discriminate the reactions of all gas molecules. Protective and non-protective oxide scales are formed on 9Cr steel depending on the exact composition of the gas mixture. In pure CO2, 9Cr steel forms a slow growing chromium-rich oxide scale without any carburization. Adding O2 impurities in CO2 favors the formation of fast growing iron-rich duplex oxide scale coupled to strong carburization. Adding several % of O2 in CO2 favors again the formation of slow growing oxide scale but with different structure and composition than in pure CO2. GPA analyses combined with oxide scale analyses demonstrate that the composition and structure of the transient oxide scale formed on 9Cr surface is determined by the rate at which surface adsorbed oxygen atoms are supplied by the gas phase in the first minutes of exposure. The presence of the very oxidizing O2 molecules in CO2 increases drastically the surface oxidation rate, favoring formation of a non-protective oxide scale which transmits carbon permitting carburization of the steel. Adding water vapor to a CO2 gas environment slows carburization. Preferential adsorption of water vapor molecules over CO2/CO molecules in the inner oxide scale is proposed to explain this result. A unified mechanism for the formation of the transient oxide scale on 9Cr steel in CO2/O2/H2O gas mixtures is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings can be shared if necessary.

References

  1. R. Oleksak and F. Rouillard, in Materials Performance in CO2 and Supercritical CO2. Comprehensive Nuclear Materials, 2nd edition, Vol. 4 (Elsevier, 2020), p. 422.

  2. S. Bouhieda, F. Rouillard, V. Barnier, and K. Wolski, Oxidation of Metals 80, 2013 (493).

    Article  CAS  Google Scholar 

  3. S. Bouhieda, F. Rouillard, and K. Wolski, Materials at High Temperature 29, 2011 (151).

    Article  Google Scholar 

  4. G. H. Meier, K. Y. Jung, N. Mu, et al., Oxidation of Metals 74, 2010 (319).

    Article  CAS  Google Scholar 

  5. J. P. Abellan, T. Olszewski, G. H. Meier, et al., International Journal of Materials Science 101, 2010 (287).

    CAS  Google Scholar 

  6. W. J. Quadakkers, T. Olszewski, J. P. Abellan, et al., VDI-Berichte 2012, 2010 (81).

    Google Scholar 

  7. D. Huenert and A. Kranzmann, Corrosion Science 53, 2011 (2306).

    Article  CAS  Google Scholar 

  8. J. P. Abellan, T. Olszewski, G. H. Meier, L. Singheiser, and W. J. Quadakkers, International Journal of Materials Research 101, 2010 (287).

    Article  CAS  Google Scholar 

  9. T. Gheno, D. Monceau, and D. J. Young, Corrosion Science 77, 2013 (246).

    Article  CAS  Google Scholar 

  10. F. Rouillard and D. J. Young, Corrosion Science 178, 2021 109092.

    Article  CAS  Google Scholar 

  11. E. F. Rauch and M. Véron, Materials Characterization 98, 2014 (1).

    Article  CAS  Google Scholar 

  12. F. Rouillard, G. Moine, L. Martinelli, and J. C. Ruiz, Oxidation of Metals 77, 2012 (27).

    Article  CAS  Google Scholar 

  13. I. Wolf, H. J. Grabke, and P. Schmidt, Oxidation of Metals 29, 1988 (289).

    Article  CAS  Google Scholar 

  14. F. Rouillard and T. Furukawa, Corrosion Science 105, 2016 (120).

    Article  CAS  Google Scholar 

  15. F. Rouillard, G. Moine, M. Tabarant, and J. C. Ruiz, Oxidation of Metals 77, 2012 (57–70).

    Article  CAS  Google Scholar 

  16. G. B. Gibbs, Oxidation of Metals 7, 1973 (173).

    Article  CAS  Google Scholar 

  17. R. P. Oleksak, M. Kapoor, D. E. Perea, G. H. Holcomb, and O. N. Dogan, npj Materials Degradation 2, 2018 (25).

    Article  Google Scholar 

  18. J. Robertson and M. I. Manning, Materials Science and Technologiy 4, 1988 (1064).

    Article  CAS  Google Scholar 

  19. A. Atkinson and D. W. Smart, Journal of the Electrochemical Society 135, 1988 (2886).

    Article  CAS  Google Scholar 

  20. L. Martinelli, F. Balbaud-Célérier, A. Terlain, et al., Corrosion Science 50, 2008 (2537).

    Article  CAS  Google Scholar 

  21. T. Gheno, D. Monceau, J. Zhang, and D. J. Young, Corrosion Science 53, 2011 (2767).

    Article  CAS  Google Scholar 

  22. D. J. Young, P. Huczkowski, T. Olszewski, et al., Corrosion Science 88, 2014 (161).

    Article  CAS  Google Scholar 

  23. K. E. Nygren, Z. Yu, F. Rouillard, and A. Couet, Corrosion Science 163, 2020 108292.

    Article  CAS  Google Scholar 

  24. L. Martinelli, C. Desgrange, F. Rouillard, et al., Corrosion Science 100, 2015 (253).

    Article  CAS  Google Scholar 

  25. HSC Thermochemistry® software version 10.3.4, Metso Outotec Finland Oy.

  26. C. Anghel, E. Hornlünd, G. Hultquist, and M. Limbäck, Applied Surface Science 233, 2004 (392).

    Article  CAS  Google Scholar 

  27. J. Chapovaloff, F. Rouillard, K. Wolski, and M. Pijolat, Corrosion Science 69, 2013 (31).

    Article  CAS  Google Scholar 

  28. G. Hultquist, M. J. Graham, J. L. Smialek, and B. Jönsson, Corrosion Science 93, 2015 (324).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ms R. Benyhia for carrying out part of the oxidation tests during their Master internship, Mr M. Tabarant for the GDOES analyses and Mr Schlegel for the Raman analyses.

Funding

This study was funded by the French Alternative Energies and Atomic Energy Commission.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: F.R; Methodology: F.R; Formal analysis and investigation: F.R, F.J, L.L-R, F.M, L.M, DJ.Y; Writing—original draft preparation: F.R, L.L-R, L.M, DJ.Y; Funding acquisition: F.R; Resources: F.R; Supervision: F.R.

Corresponding author

Correspondence to F. Rouillard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouillard, F., Jomard, F., Latu-Romain, L. et al. The Role of O2 and H2O Impurities in Dictating the Oxidation Mechanism and Protective Capacity of 9Cr Steels in Hot CO2. High Temperature Corrosion of mater. 100, 557–595 (2023). https://doi.org/10.1007/s11085-023-10186-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10186-y

Keywords

Navigation