Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 7, 2023

Effect of non-ideal gas working fluid on power and efficiency performances of an irreversible Otto cycle

  • Di Wu , Yanlin Ge , Lingen Chen EMAIL logo and Lei Tian

Abstract

Based on the irreversible Otto cycle model, applying finite-time-thermodynamic theory, this paper takes power and efficiency as the objective functions, further studies the cycle performance under the condition of non-ideal gas working fluid, analyzes the effects of different loss items and freedom degree (d) of monatomic gas on the cycle performance, and compares performance differences of ideal gas and non-ideal gas under different specific heat models. The results demonstrate that, with the increase of d, the maximum-power-output (P max), the maximum-thermal-efficiency (η max), the corresponding optimal compression-ratio ( ( γ opt ) p ) and efficiency (η P ) at the P max point, and the corresponding optimal compression ratio ( ( γ opt ) η ) and power (P η ) at the η max point will all increase; the P max, ( γ opt ) p , η max, ( γ opt ) η , η p and P η will decrease with the increases of three irreversible losses; the specific heat model has only quantitative effect on cycle performance but no qualitative effect; under condition of non-ideal gas specific heat model, the power and efficiency are the smallest.


Corresponding author: Lingen Chen, Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan, 430205, P.R. China; Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, P.R. China; and School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430205, P.R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Competing interests: The authors declare no conflicts of interest regarding this article.

  3. Research funding: This work is supported by the National Natural Science Foundation of China (Project Nos. 52171317 and 51779262) and Graduate Innovative Fund of Wuhan Institute of Technology (Project No. CX2022072). The authors wish to thank the reviewer for careful, unbiased, and constructive suggestions, which led to this revised manuscript.

Nomenclature

B

heat-transfer-loss coefficient (W/K)

C v

specific heat at constant volume (J/(mol K))

d

freedom degree of monatomic gas

M

molar flow rate (mol/s)

P

power output (W)

Q

heat-transfer rate (W)

T

temperature (K)

Greek symbols
γ

compression-ratio (–)

η

thermal efficiency (–)

η c

compression-process efficiency (–)

η e

expansion-process efficiency (–)

μ

friction-coefficient (–)

Subscripts
In

input

leak

heat leak

max

maximum

out

output

0

environment

1–4, 2s, 4s

cycle state points

Abbreviations
FTT

finite time thermodynamics

OC

Otto cycle

POW

power output

SH

specific heat

TEF

thermal efficiency

WF

working fluid

References

[1] B. Andresen, Finite-Time Thermodynamics, Copenhagen, University of Copenhagen, 1983.Search in Google Scholar

[2] L. G. Chen, C. Wu, and F. R. Sun, “Finite time thermodynamic optimization or entropy generation minimization of energy systems,” J. Non-Equilib. Thermodyn., vol. 24, no. 4, pp. 327–359, 1999. https://doi.org/10.1515/jnet.1999.020.Search in Google Scholar

[3] M. Feidt and M. Costea, “Progress in Carnot and Chambadal modeling of thermomechnical engine by considering entropy and heat transfer entropy,” Entropy, vol. 21, no. 12, p. 1232, 2019. https://doi.org/10.3390/e21121232.Search in Google Scholar

[4] B. Andresen and P. Salamon, “Future perspectives of finite-time thermodynamics,” Entropy, vol. 24, no. 5, p. 690, 2022. https://doi.org/10.3390/e24050690.Search in Google Scholar PubMed PubMed Central

[5] L. G. Chen and Y. L. Ge, Finite Time Thermodynamic Optimization for Air Standard Thermal Power Cycles, London, Book Publisher International, 2023.10.9734/bpi/mono/978-81-19761-94-4Search in Google Scholar

[6] V. Badescu, “Maximum work rate extractable from energy fluxes,” J. Non-Equilib. Thermodyn., vol. 47, no. 1, pp. 77–93, 2022. https://doi.org/10.1515/jnet-2021-0039.Search in Google Scholar

[7] L. G. Chen and S. J. Xia, “Heat engine cycle configurations for maximum work output with generalized models of reservoir thermal capacity and heat resistance,” J. Non-Equilib. Thermodyn., vol. 47, no. 4, pp. 329–338, 2022. https://doi.org/10.1515/jnet-2022-0029.Search in Google Scholar

[8] J. Li and L. G. Chen, “Optimal configuration of finite source heat engine cycle for maximum output work with complex heat transfer law,” J. Non-Equilib. Thermodyn., vol. 47, no. 4, pp. 433–441, 2022. https://doi.org/10.1515/jnet-2022-0024.Search in Google Scholar

[9] R. Paul and K. H. Hoffmann, “Optimizing the piston paths of Stirling cycle cryocoolers,” J. Non-Equilib. Thermodyn., vol. 47, no. 2, pp. 195–203, 2022. https://doi.org/10.1515/jnet-2021-0073.Search in Google Scholar

[10] L. G. Chen and S. J. Xia, “Minimum power consumption of multistage irreversible Carnot heat pumps with heat transfer law of q ∝ (ΔT)m,” J. Non-Equilib. Thermodyn., vol. 48, no. 1, pp. 107–118, 2023. https://doi.org/10.1515/jnet-2022-0068.Search in Google Scholar

[11] P. L. Li, L. G. Chen, S. J. Xia, R. Kong, and Y. L. Ge, “Total entropy generation rate minimization configuration of a membrane reactor of methanol synthesis via carbon dioxide hydrogenation,” Sci. China: Technol. Sci., vol. 65, no. 3, pp. 657–678, 2022. https://doi.org/10.1007/s11431-021-1935-4.Search in Google Scholar

[12] L. G. Chen and S. J. Xia, “Power-optimization of multistage non-isothermal chemical engine system via Onsager equations, Hamilton-Jacobi-Bellman theory and dynamic programming,” Sci. China: Technol. Sci., vol. 66, no. 3, pp. 841–852, 2023. https://doi.org/10.1007/s11431-022-2229-6.Search in Google Scholar

[13] L. G. Chen and S. J. Xia, “Maximum work configuration of finite potential source endoreversible non-isothermal chemical engines,” J. Non-Equilib. Thermodyn., vol. 48, no. 1, pp. 41–53, 2023. https://doi.org/10.1515/jnet-2022-0045.Search in Google Scholar

[14] L. G. Chen and S. J. Xia, “Power output and efficiency optimization of endoreversible non-isothermal chemical engine via Lewis analogy,” Sci. China: Technol. Sci., vol. 66, 2023, https://doi.org/10.1007/s11431-022-2281-8.Search in Google Scholar

[15] Y. L. Ge, S. S. Shi, L. G. Chen, D. F. Zhang, and H. J. Feng, “Power density analysis and multi-objective optimization for an irreversible Dual cycle,” J. Non-Equilib. Thermodyn., vol. 47, no. 3, pp. 289–309, 2022. https://doi.org/10.1515/jnet-2021-0083.Search in Google Scholar

[16] G. Gonca and B. Guzel, “Exergetic and exergo-economical analyses of a gas-steam combined cycle system,” J. Non-Equilib. Thermodyn., vol. 47, no. 4, pp. 415–431, 2022. https://doi.org/10.1515/jnet-2022-0042.Search in Google Scholar

[17] L. G. Chen, F. L. Zhu, S. S. Shi, Y. L. Ge, and H. J. Feng, “Power and efficiency optimizations of Maisotsenko-Atkinson, Dual and Miller cycles and performance comparisons with corresponding traditional cycles,” Sci. China: Technol. Sci., vol. 66, 2023, https://doi.org/10.1007/s11431-023-2444-1.Search in Google Scholar

[18] L. G. Chen, P. L. Li, S. J. Xia, R. Kong, and Y. L. Ge, “Multi-objective optimization of membrane reactor for steam methane reforming heated by molten salt,” Sci. China: Technol. Sci., vol. 65, no. 6, pp. 1396–1414, 2022. https://doi.org/10.1007/s11431-021-2003-0.Search in Google Scholar

[19] L. G. Chen, S. S. Shi, H. J. Feng, and Y. L. Ge, “Maximum ecological function performance for a three-reservoir endoreversible chemical pump,” J. Non-Equilib. Thermodyn., vol. 48, no. 2, pp. 179–194, 2023. https://doi.org/10.1515/jnet-2022-0062.Search in Google Scholar

[20] E. González-Mora, R. Poudel, and M. D. Durán-Garcí, “A practical upper-bound efficiency model for solar power plants,” J. Non-Equilib. Thermodyn., vol. 48, no. 3, pp. 331–344, 2023. https://doi.org/10.1515/jnet-2022-0080.Search in Google Scholar

[21] X. W. Liu, L. G. Chen, Y. L. Ge, H. J. Feng, F. Wu, and G. Lorenzini, “Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with spin-1/2 systems,” J. Non-Equilib. Thermodyn., vol. 46, no. 1, pp. 61–76, 2021. https://doi.org/10.1515/jnet-2020-0028.Search in Google Scholar

[22] J. J. Fernández, “Energy production in one-qubit quantum Agrawal machines,” J. Non-Equilib. Thermodyn., vol. 48, no. 3, pp. 303–312, 2023. https://doi.org/10.1515/jnet-2022-0081.Search in Google Scholar

[23] L. G. Chen, F. K. Meng, Y. L. Ge, and H. J. Feng, “Performance optimization for a multielement thermoelectric refrigerator with linear phenomenological heat transfer law,” J. Non-Equilib. Thermodyn., vol. 46, no. 2, pp. 149–162, 2021. https://doi.org/10.1515/jnet-2020-0050.Search in Google Scholar

[24] L. G. Lafaurie-Ponce, F. Chejne, L. M. Ramirez-Aristeguieta, and C. A. Gomez, “A study of the nonlinear Thomson effect produced by changing the current in a thermoelectric cooler,” J. Non-Equilib. Thermodyn., vol. 47, no. 4, pp. 339–354, 2022. https://doi.org/10.1515/jnet-2022-0037.Search in Google Scholar

[25] D. Ladino-Luna, J. C. Chimal-Eguía, J. C. Pacheco-Paez, and R. T. Páez-Hernández, “A simplified analysis of the Feynman pallet and ratchet mechanism considering different forms of generated power,” J. Non-Equilib. Thermodyn., vol. 48, no. 3, pp. 291–302, 2023. https://doi.org/10.1515/jnet-2022-0098.Search in Google Scholar

[26] D. A. Blank and C. Wu, “Optimization of the endoreversible Otto cycle with respect to both power and mean effective pressure,” Energy Convers. Manage., vol. 34, pp. 1255–1209, 1993. https://doi.org/10.1016/0196-8904(93)90121-p.Search in Google Scholar

[27] L. G. Chen, C. Wu, F. R. Sun, and S. Cao, “Heat transfer effects on the net work output and efficiency characteristics for an air standard Otto cycle,” Energy Convers. Manage., vol. 39, pp. 643–648, 1998. https://doi.org/10.1016/s0196-8904(97)10003-6.Search in Google Scholar

[28] O. A. Ozsoysal, “Heat loss as a percentage of fuel’s energy in air standard Otto and Diesel cycles,” Energy Convers. Manage., vol. 47, pp. 1051–1062, 2006. https://doi.org/10.1016/j.enconman.2005.06.020.Search in Google Scholar

[29] H. Hu, H. Xu, and J. Liu., “Optimal analysis of the performance of an irreversible Otto cycle,” J. Southeast Univ. Nat. Sci. Ed., vol. 33, no. 1, pp. 57–60, 2011. https://doi.org/10.1186/1742-4690-8-57.Search in Google Scholar PubMed PubMed Central

[30] H. Ozcan, “The effects of heat transfer on the exergy efficiency of an air-standard otto cycle,” Heat Mass Transf., vol. 47, no. 5, pp. 571–577, 2011. https://doi.org/10.1007/s00231-010-0749-5.Search in Google Scholar

[31] A. L. S. Moscato, S. D. R. Oliveira, V. L. Scalon, and A. Padilha, “Optimization of an irreversible Otto and Diesel cycles based on ecological function,” Therm. Sci., vol. 22, no. 3, pp. 1193–1202, 2018. https://doi.org/10.2298/tsci170613190m.Search in Google Scholar

[32] E. Arabaci and B. Kılıç, “Effect of stroke ratio and residual gas fraction on performance of an Otto cycle engines,” MAKÜ-Uyg. Bil. Derg., vol. 2, no. 2, pp. 100–111, 2018. https://doi.org/10.31200/makuubd.447745.Search in Google Scholar

[33] A. I. Kodal and A. Kodal, “Comparative performance evaluations of various optimization functions for irreversible Otto cycles,” Therm. Sci. Eng. Prog., vol. 15, p. 100452, 2020. https://doi.org/10.1016/j.tsep.2019.100452.Search in Google Scholar

[34] E. Arabaci, “Performance analysis of a novel six-stroke Otto cycle engine,” Therm. Sci., vol. 25, no. 3 Part A, pp. 1719–1729, 2021. https://doi.org/10.2298/tsci190926144a.Search in Google Scholar

[35] J. A. Rocha-Martinez, T. D. Navarrete-Gonzalez, and C. G. Pava-Miller, “Otto and Diesel engine models with cyclic variability,” Rev. Mex. Fis., vol. 48, no. 48, pp. 228–234, 2002.Search in Google Scholar

[36] Y. L. Ge, L. G. Chen, F. R. Sun, and C. Wu, “Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid,” Int. J. Therm. Sci., vol. 44, no. 5, pp. 506–511, 2005. https://doi.org/10.1016/j.ijthermalsci.2004.10.001.Search in Google Scholar

[37] Y. L. Ge, L. G. Chen, F. R. Sun, and C. Wu, “The effects of variable specific heats of working fluid on the performance of an irreversible Otto cycle,” Int. J. Exergy, vol. 2, no. 3, pp. 274–283, 2005. https://doi.org/10.1504/ijex.2005.007255.Search in Google Scholar

[38] R. M. Nejad, I. S. Marghmaleki, R. Hoseini, and P. Alaei, “Effects of irreversible different parameters of air standard Otto cycle,” J. Am. Sci., vol. 7, no. 3, pp. 248–254, 2011.Search in Google Scholar

[39] Y. L. Ge, L. G. Chen, and F. R. Sun, “Finite time thermodynamic modeling and analysis of an irreversible Otto cycle,” Appl. Energy, vol. 85, no. 7, pp. 618–624, 2008. https://doi.org/10.1016/j.apenergy.2007.09.008.Search in Google Scholar

[40] Y. L. Ge, L. G. Chen, and X. Y. Qin, “Effect of specific heat variations on irreversible Otto cycle performance,” Int. J. Heat Mass Transfer, vol. 122, pp. 403–409, 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.132.Search in Google Scholar

[41] R. Ebrahimi, “Effects of variable specific heat ratio on performance of an endreversible Otto cycle,” Acta Phys. Pol. A, vol. 117, no. 6, pp. 887–891, 2010. https://doi.org/10.12693/aphyspola.117.887.Search in Google Scholar

[42] R. Ebrahimi, “Thermodynamic simulation of performance of an irreversible Otto cycle with engine speed and variable specific heat ratio of working fluid,” Arab. J. Sci. Eng., vol. 39, no. 3, pp. 2091–2096, 2014. https://doi.org/10.1007/s13369-013-0769-9.Search in Google Scholar

[43] A. Syaifudin, R. Romy, and A. Martin, “Analisis energi gas engine siklus Otto kapasitas 835 kW,” Jom Fteknik, vol. 5, no. 1, pp. 1–4, 2018.Search in Google Scholar

[44] Y. L. Ge, L. G. Chen, and F. R. Sun, “Ecological optimization of an irreversible Otto cycle,” Arab. J. Sci. Eng., vol. 38, no. 2, pp. 373–381, 2013. https://doi.org/10.1007/s13369-012-0434-8.Search in Google Scholar

[45] S. S. Shi, L. G. Chen, and Y. L. Ge, “Irreversible Otto cycle power density analysis and multi-objective optimization,” Sci. China: Technol. Sci., vol. 52, no. 11, pp. 1716–1728, 2022. https://doi.org/10.1360/sst-2021-0168.Search in Google Scholar

[46] E. Dobrucali, “The effects of the engine design and running parameters on the performance of a Otto-Miller Cycle engine,” Energy, vol. 103, pp. 119–126, 2016. https://doi.org/10.1016/j.energy.2016.02.160.Search in Google Scholar

[47] J. X. Zhao and F. C. Xu, “Finite-time thermodynamic modeling and a comparative performance analysis for irreversible Otto, Miller and Atkinson Cycles,” Entropy, vol. 20, no. 1, p. 75, 2018. https://doi.org/10.3390/e20010075.Search in Google Scholar PubMed PubMed Central

[48] M. Gumus, M. Atmaca, and T. Yilmaz, “Efficiency of an Otto engine under alternative power optimizations,” Int. J. Energy Res., vol. 39, no. 8, pp. 745–752, 2009. https://doi.org/10.1002/er.1515.Search in Google Scholar

[49] S. S. Shi, “Power density analyses and multi-objective optimizations for internal combustion engine cycles,” Master thesis, Wuhan, Wuhan Institute of Technology, 2022, (In Chinese).Search in Google Scholar

[50] A. Medina, P. L. Curto-Risso, A. Calvo-Hernández, L. Guzmán-Vargas, F. Angulo-Brown, and A. K. Sen, Quasi-Dimensional Simulation of Spark Ignition Engines. From Thermodynamic Optimization to Cyclic Variability, London, Springer, 2014.10.1007/978-1-4471-5289-7Search in Google Scholar

[51] Y. L. Ge, L. G. Chen, and F. R. Sun, “Progress in finite time thermodynamic studies for internal combustion engine cycles,” Entropy, vol. 18, no. 4, p. 139, 2016. https://doi.org/10.3390/e18040139.Search in Google Scholar

[52] A. S. Madakavil and I. Kim, “Heat engines running upon a non-ideal fluid model with higher efficiencies than upon the ideal gas model,” Int. J. Thermodyn., vol. 20, no. 1, pp. 16–24, 2017. https://doi.org/10.5541/eoguijt.297403.Search in Google Scholar

[53] D. Wu, Y. L. Ge, L. G. Chen, and L. Tian, “Effect of non-ideal gas working fluids on power efficiency performances of endoreversible Otto cycle,” Energy Conserv., vol. 42, no. 1, pp. 30–33, 2023.Search in Google Scholar

[54] M. Chen, Y. L. Ge, L. G. Chen, Z. H. Xie, and S. S. Shi, “Optimal performance of endoreversible Dual cycle with non-ideal gas working fluid,” Coll. Phys., vol. 42, no. 8, pp. 32–36, 2023. https://doi.org/10.1016/j.urology.2023.05.023.Search in Google Scholar PubMed

[55] F. Angulo-Brown, J. Fernandez-Betanzos, and C. A. Diaz-Pico, “Compression ratio of an optimized Otto-cycle model,” Eur. J. Phys., vol. 15, no. 1, pp. 38–42, 1994. https://doi.org/10.1088/0143-0807/15/1/007.Search in Google Scholar

[56] J. C. Chen, Y. R. Zhao, and J. Z. He, “Optimization criteria for the important parameters of an irreversible Otto heat-engine,” Appl. Energy, vol. 83, no. 3, pp. 228–238, 2006. https://doi.org/10.1016/j.apenergy.2005.01.011.Search in Google Scholar

[57] A. S. Campbell, Thermodynamic analysis of Combustion Engines, New York, John Wiley, 1979.Search in Google Scholar

[58] G. H. A. Cole, Thermal Power Cycles, London, Edward Arnold, 1991.Search in Google Scholar

[59] A. Ghatak and S. Chakraborty, “Effect of external irreversibilities and variable thermal properties of working fluid on thermal performance of a Dual internal combustion engine cycle,” J. Mech. Energy, vol. 58, no. 1, pp. 1–12, 2007.Search in Google Scholar

[60] S. A. Klein, “An explanation for observed compression ratios in internal combustion engines,” J. Eng. Gas Turbines Power, vol. 113, no. 4, pp. 511–513, 1991. https://doi.org/10.1115/1.2906270.Search in Google Scholar

[61] Y. L. Ge, “Finite time thermodynamic analysis and optimization for irreversible internal combustion engine cycles,” Doctoral dissertation, Wuhan, Naval University of Engineering, 2011, (In Chinese).Search in Google Scholar

Received: 2023-04-13
Accepted: 2023-08-24
Published Online: 2023-09-07
Published in Print: 2023-10-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.5.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2023-0036/html
Scroll to top button