Skip to main content

Advertisement

Log in

Increased Fungal Infection Mortality Induced by Concurrent Viral Cellular Manipulations

  • REVIEW: CONCURRENT FUNGAL AND VIRAL INFECTIONS
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Certain respiratory fungal pathogen mono-infections can cause high mortality rates. Several viral pathogen mono-infections, including influenza viruses and coronaviruses including SARS-CoV-2, can also cause high mortality rates. Concurrent infections by fungal pathogens and highly manipulative viral pathogens can synergistically interact in the respiratory tract to substantially increase their mortality rates. There are at least five viral manipulations which can assist secondary fungal infections. These viral manipulations include the following: (1) inhibiting transcription factors and cytokine expressions, (2) impairing defensive protein expressions, (3) inhibiting defenses by manipulating cellular sensors and signaling pathways, (4) inhibiting defenses by secreting exosomes, and (5) stimulating glucocorticoid synthesis to suppress immune defenses by inhibiting cytokine, chemokine, and adhesion molecule production. The highest mortality respiratory viral pandemics up to now have had substantially boosted mortalities by inducing secondary bacterial pneumonias. However, numerous animal species besides humans are also carriers of endemic infections by viral and multidrug-resistant fungal pathogens. The vast multi-species scope of endemic infection opportunities make it plausible that the pro-fungal manipulations of a respiratory virus can someday evolve to enable a very high mortality rate viral pandemic inducing multidrug-resistant secondary fungal pathogen infections. Since such pandemics can quickly spread world-wide and outrun existing treatments, it would be worthwhile to develop new antifungal treatments well before such a high mortality event occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Front Immunol. 2021;12:756249. https://doi.org/10.3389/fimmu.2021.757249. This is licensed under Creative Commons CC-BY version 4 from Frontiers as the original publisher. Copyright © 2021 Sugrue, Bourke and O’Farrelly

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

ALI:

Acute lung injury

AP-1:

Activator protein-1

ARDS:

Acute respiratory distress syndrome

BALF:

Bronchoalveolar lavage fluid

CAC:

COVID-19-associated candidiasis

CAM:

COVID-19-associated mucormycosis

CAP:

Community-acquired pneumonia

CAPA:

COVID-19-associated pulmonary aspergillosis

CMV:

Cytomegalovirus

CSF:

Cerebral spinal fluid

DC:

Dendritic cell

HA:

Hemagglutinin

hMPV:

Human metapneumovirus

IAPA:

Influenza-associated pulmonary aspergillosis

IAV:

Influenza A virus

IBV:

Influenza B virus

ICAM-1:

Intracellular adhesion molecule-1

IFN:

Interferon

IFNAR:

IFN-α/β receptor

IFNRG1:

IFN-γ receptor 1

IL:

Interleukin

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

IL-12:

Interleukin-12

IL-17:

Interleukin-17

IL-18:

Interleukin-18

IL-22:

Interleukin-22

IL-23:

Interleukin-23

IPA:

Invasive pulmonary aspergillosis

IRF:

IFN-regulatory factor

IRGs:

Interferon-regulated genes

ISGs:

Interferon-stimulated genes

JAK-STAT:

Janus kinase-STAT

LPS:

Lipopolysaccharide

LTA:

Lipoteichoic acid

MAVS:

Mitochondrial antiviral signaling proteins

MHC:

Major histocompatibility complex

NA:

Neuraminidase

NF-κB:

Nuclear factor 'kappa-light-chain-enhancer' of activated B-cells

NK-Cell:

Natural killer cell

NOD:

Nucleotide-binding oligomerization domain

NLR:

NOD-like receptor

NP:

Nucleoprotein

NS1:

Nonstructural protein 1

NS1ABP:

Nonstructural-1A binding protein

PAMP:

Pathogen associated molecular pattern

pDC:

Plasmacytoid dendritic cell

PKR:

Protein kinase RNA-regulated

PRR:

Pathogen recognition receptor

RdRp:

RNA-dependent RNA polymerase

RIG-I:

Retinoic acid-inducible gene 1

RLR:

RIG-I-like receptor

RSV:

Respiratory syncytial virus

RNA:

Ribonucleic acid

dsRNA:

Double strand RNA

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus-2

ssRNA:

Single strand RNA

STAT:

Signal transducer and activator of transcription

STING:

Stimulator of interferon genes

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-α

TH17:

Helper T-17T-cell

TREGS :

Regulatory T-cells

References

  1. Othumpangat S, Lindsley WG, Beezhold DH, Kashon ML, Burrell CN, Mubareka S, Noti JD (2021) Differential expression of serum exosome microRNAs and cytokines in influenza A and B patients collected in the 2016 and 2017 influenza seasons. Pathogens 10(2):149. https://doi.org/10.3390/pathogens10020149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nagaoka Y, Nosaka N, Yamada M, Yashiro M, Washio Y, Baba K, Morishima T, Tsukahara H (2017) Local and systemic immune responses to influenza A virus infection in pneumonia and encephalitis mouse models. Dis Markers 2017:2594231. https://doi.org/10.1155/2017/2594231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu S, Han L, Wei Y, Zhang B, Wang Q, Liu J, Liu M, Chen Z, Wang Z, Chen H, Zhu Q (2022) MicroRNA-200c-targeted contactin 1 facilitates the replication of influenza A virus by accelerating the degradation of MAVS. PLoS Pathog 18(2):e1010299. https://doi.org/10.1371/journal.ppat.1010299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roe K (2023) Eight influenza virus cellular manipulations which can boost concurrent SARS-CoV-2 infections to severe outcomes. Hum Cell 36(5):1581–1592. https://doi.org/10.1007/s13577-023-00923-5

    Article  CAS  PubMed  Google Scholar 

  5. Salazar F, Bignell E, Brown GD, Cook PC, Warris A (2022) Pathogenesis of respiratory viral and fungal coinfections. Clin Microbiol Rev 35(1):e0009421. https://doi.org/10.1128/CMR.00094-21

    Article  PubMed  Google Scholar 

  6. Chavda VP, Mishra T, Kamaraj S, Punetha S, Sengupta O, Joshi Y, Vuppu S, Vaghela D, Vora L (2023) Post-COVID-19 fungal infection in the aged population. Vaccines (Basel) 11(3):555. https://doi.org/10.3390/vaccines11030555

    Article  CAS  PubMed  Google Scholar 

  7. Amin A, Vartanian A, Poladian N, Voloshko A, Yegiazaryan A, Al-Kassir AL, Venketaraman V (2021) Root causes of fungal coinfections in COVID-19 infected patients. Infect Dis Rep 13(4):1018–1035. https://doi.org/10.3390/idr13040093

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu KW, Grau MS, Jones JT, Wang X, Vesely EM, James MR, Gutierrez-Perez C, Cramer RA, Obar JJ (2022) Postinfluenza environment reduces Aspergillus fumigatus Conidium clearance and facilitates invasive aspergillosis in vivo. mBio 13(6):e0285422. https://doi.org/10.1128/mbio.02854-22

    Article  CAS  PubMed  Google Scholar 

  9. Dam P, Cardoso MH, Mandal S, Franco OL, Sağıroğlu P, Polat OA, Kokoglu K, Mondal R, Mandal AK, Ocsoy I (2023) Surge of mucormycosis during the COVID-19 pandemic. Travel Med Infect Dis 52:e102557. https://doi.org/10.1016/j.tmaid.2023.102557

    Article  CAS  Google Scholar 

  10. Seyedjavadi SS, Bagheri P, Nasiri MJ, Razzaghi-Abyaneh M, Goudarzi M (2022) Fungal infection in co-infected patients with COVID-19: an overview of case reports/case series and systematic review. Front Microbiol 13:888452. https://doi.org/10.3389/fmicb.2022.888452

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tobin JM, Nickolich KL, Ramanan K, Pilewski MJ, Lamens KD, Alcorn JF, Robinson KM (2020) Influenza suppresses neutrophil recruitment to the lung and exacerbates secondary invasive pulmonary aspergillosis. J Immunol 205(2):480–488. https://doi.org/10.4049/jimmunol.2000067

    Article  CAS  PubMed  Google Scholar 

  12. Lai CC, Yu WL (2021) COVID-19 associated with pulmonary aspergillosis: a literature review. J Microbiol Immunol Infect 54(1):46–53. https://doi.org/10.1016/j.jmii.2020.09.004

    Article  CAS  PubMed  Google Scholar 

  13. Negm EM, Mohamed MS, Rabie RA, Fouad WS, Beniamen A, Mosallem A, Tawfik AE, Salama HM (2023) Fungal infection profile in critically ill COVID-19 patients: a prospective study at a large teaching hospital in a middle-income country. BMC Infect Dis 23(1):246. https://doi.org/10.1186/s12879-023-08226-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khade S, Nalwa A, Rao M, Aggarwal D, Sharma V, Chugh A (2023) Mucormycosis: an epidemic complicating the COVID-19 pandemic. Oman Med J 38(3):e511. https://doi.org/10.5001/omj.2023.16

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y, Wang X, Yang Y, Yan J, Xiong Y, Wang W, Lei J, Jiang T (2023) Recapitulating essential pathophysiological characteristics in lung-on-a-chip for disease studies. Front Immunol 14:1093460. https://doi.org/10.3389/fimmu.2023.1093460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Troeger CE, Blacker BF, Khalil IA, Zimsen SRM, Albertson SB, Abate D, Abdela J, Adhikari TB, Aghayan SA, Agrawal S et al (2019) Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. Lancet Respir Med 7:69–89. https://doi.org/10.1016/S2213-2600(18)30496-X

    Article  Google Scholar 

  17. Lee KH, Gordon A, Foxman B (2016) The role of respiratory viruses in the etiology of bacterial pneumonia. Evol Med Public Health 2016:95–109. https://doi.org/10.1093/emph/eow007

    Article  PubMed  PubMed Central  Google Scholar 

  18. Price OH, Sullivan SG, Sutterby C, Druce J, Carville KS (2019) Using routine testing data to understand circulation patterns of influenza A, respiratory syncytial virus and other respiratory viruses in Victoria, Australia. Epidemiol. Infect 147:e221. https://doi.org/10.1017/S0950268819001055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar N, Sharma S, Barua S, Tripathi BN, Rouse BT (2018) Virological and immunological outcomes of coinfections. Clin Microbiol Rev 31(4):e00111-e117. https://doi.org/10.1128/CMR.00111-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaaijk P, Swaans N, Nicolaie AM, Bruin JP, van Boxtel RAJ, de Lange MMA, Meijer A, Sanders EAM, van Houten MA, Rots NY, Luytjes W, van Beek J (2022) Contribution of influenza viruses, other respiratory viruses and viral co-infections to influenza-like illness in older adults. Viruses 14(4):797. https://doi.org/10.3390/v14040797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nickbakhsh S, Mair C, Matthews L, Reeve R, Johnson PCD, Thorburn F, von Wissmann B, Reynolds A, McMenamin J, Gunson RN, Murcia PR (2019) Virus-virus interactions impact the population dynamics of influenza and the common cold. Proc Natl Acad Sci U S A 116(52):27142–27150. https://doi.org/10.1073/pnas.1911083116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Opatowski L, Baguelin M, Eggo RM (2018) Influenza interaction with cocirculating pathogens and its impact on surveillance, pathogenesis, and epidemic profile: a key role for mathematical modelling. PLoS Pathog 14:e1006770. https://doi.org/10.1371/journal.ppat.1006770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brundage JF, Shanks GD (2008) Deaths from bacterial pneumonia during 1918–19 influenza pandemic. Emerg Infect Dis 14(8):1193–1199. https://doi.org/10.3201/eid1408.071313

    Article  PubMed  PubMed Central  Google Scholar 

  24. Joseph C, Togawa Y, Shindo N (2013) Bacterial and viral infections associated with influenza. Influenza Other Respir Viruses 7(Suppl 2):105–113. https://doi.org/10.1111/irv.12089

    Article  PubMed  PubMed Central  Google Scholar 

  25. Morens DM, Taubenberger JK, Fauci AS (2008) Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 198(7):962–970. https://doi.org/10.1086/591708

    Article  PubMed  Google Scholar 

  26. Voiriot G, Visseaux B, Cohen J, Nguyen LB, Neuville M, Morbieu C, Burdet C, Radjou A, Lescure FX, Smonig R, Armand-Lefèvre L, Mourvillier B, Yazdanpanah Y, Soubirou JF, Ruckly S, Houhou-Fidouh N, Timsit JF (2016) Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia. Crit Care 20(1):375. https://doi.org/10.1186/s13054-016-1517-9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nilsson-Payant BE, Blanco-Melo D, Uhl S, Escudero-Pérez B, Olschewski S, Thibault P, Panis M, Rosenthal M, Muñoz-Fontela C, Lee B, tenOever BR (2021) Reduced nucleoprotein availability impairs negative-sense RNA virus replication and promotes host recognition. J Virol 95(9):e02274-20. https://doi.org/10.1128/JVI.02274-20

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sugrue JA, Bourke NM, O’Farrelly C (2021) Type I interferon and the spectrum of susceptibility to viral infection and autoimmune disease: a shared genomic signature. Front Immunol 12:756249. https://doi.org/10.3389/fimmu.2021.757249

    Article  CAS  Google Scholar 

  29. Goubau D, Deddouche S, Reis e Sousa C (2013) Cytosolic sensing of viruses. Immunity 38:855–869. https://doi.org/10.1016/j.immuni.2013.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, Robb N, Vreede F, Barclay W, Fodor E, Reis e Sousa C (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140:397–408. https://doi.org/10.1016/j.cell.2010.01.020

    Article  CAS  PubMed  Google Scholar 

  31. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820. https://doi.org/10.1016/j.cell.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  32. Levy DE, Marié IJ, Durbin JE (2011) Induction and function of type I and III interferon in response to viral infection. Curr Opin Virol 1:476–486. https://doi.org/10.1016/j.coviro.2011.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Othumpangat S, Beezhold DH, Umbright CM, Noti JD (2021) Influenza virus-induced novel miRNAs regulate the STAT pathway. Viruses 13(6):967. https://doi.org/10.3390/v13060967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16:343–353. https://doi.org/10.1038/ni.3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6(12):975–990. https://doi.org/10.1038/nrd2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284(5421):1835–1837. https://doi.org/10.1126/science.284.5421.1835

    Article  CAS  PubMed  Google Scholar 

  37. Kash JC, Walters KA, Davis AS et al (2011) Lethal synergism of 2009 pandemic H1N1 influenza virus and Streptococcus pneumoniae coinfection is associated with loss of murine lung repair responses. mBio 2(5):e00172-e211. https://doi.org/10.1128/mbio.00172-11

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nickerson CL, Jakab GJ (1990) Pulmonary antibacterial defenses during mild and severe influenza virus infection. Infect Immun 58(9):2809–2814. https://doi.org/10.1128/iai.58.9.2809-2814.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shahangian A, Chow EK, Tian X, Kang JR, Ghaffari A, Liu SY, Belperio JA, Cheng G, Deng JC (2009) Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J Clin Invest 119(7):1910–1920. https://doi.org/10.1172/JCI35412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cao J, Wang D, Xu F, Gong Y, Wang H, Song Z, Li D, Zhang H, Li D, Zhang L, Xia Y, Xu H, Lai X, Lin S, Zhang X, Ren G, Dai Y, Yin Y (2014) Activation of IL-27 signalling promotes development of postinfluenza pneumococcal pneumonia. EMBO Mol Med 6(1):120–140. https://doi.org/10.1002/emmm.201302890

    Article  CAS  PubMed  Google Scholar 

  41. Didierlaurent A, Goulding J, Patel S et al (2008) Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J Exp Med 205(2):323–329. https://doi.org/10.1084/jem.20070891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee B, Robinson KM, McHugh KJ, Scheller EV, Mandalapu S, Chen C, Di YP, Clay ME, Enelow RI, Dubin PJ, Alcorn JF (2015) Influenza-induced type I interferon enhances susceptibility to gram-negative and gram-positive bacterial pneumonia in mice. Am J Physiol Lung Cell Mol Physiol 309(2):L158–L167. https://doi.org/10.1152/ajplung.00338.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rayamajhi M, Humann J, Penheiter K, Andreasen K, Lenz LL (2010) Induction of IFN-alphabeta enables Listeria monocytogenes to suppress macrophage activation by IFN-gamma. J Exp Med 207(2):327–337. https://doi.org/10.1084/jem.20091746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Manca C, Tsenova L, Bergtold A, Freeman S, Tovey M, Musser JM, Barry CE 3rd, Freedman VH, Kaplan G (2001) Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha /beta. Proc Natl Acad Sci U S A 98(10):5752–5757. https://doi.org/10.1073/pnas.091096998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, Quinn C, Blankenship D, Dhawan R, Cush JJ, Mejias A, Ramilo O, Kon OM, Pascual V, Banchereau J, Chaussabel D, O’Garra A (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):973–977. https://doi.org/10.1038/nature09247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carrero JA, Calderon B, Unanue ER (2004) Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J Exp Med 200(4):535–540. https://doi.org/10.1084/jem.20040769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boxx GM, Cheng G (2016) The roles of type I interferon in bacterial infection. Cell Host Microbe 19(6):760–769. https://doi.org/10.1016/j.chom.2016.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mack EA, Kallal LE, Demers DA, Biron CA (2011) Type 1 interferon induction of natural killer cell gamma interferon production for defense during lymphocytic choriomeningitis virus infection. mBio 2(4):e00169-11. https://doi.org/10.1128/mBio.00169-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA (2007) High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells. J Exp Med 204(10):2383–2396. https://doi.org/10.1084/jem.20070401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wolff T, O’Neill RE, Palese P (1998) NS1-Binding protein (NS1-BP): a novel human protein that interacts with the influenza A virus nonstructural NS1 protein is relocalized in the nuclei of infected cells. J Virol 72(9):7170–7180. https://doi.org/10.1128/JVI.72.9.7170-7180.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Geiss GK, Salvatore M, Tumpey TM, Carter VS, Wang X, Basler CF, Taubenberger JK, Bumgarner RE, Palese P, Katze MG, García-Sastre A (2002) Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc Natl Acad Sci U S A 99(16):10736–10741. https://doi.org/10.1073/pnas.112338099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, García-Sastre A (2000) Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J Virol 74(24):11566–11573. https://doi.org/10.1128/jvi.74.24.11566-11573.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jia D, Rahbar R, Chan RW, Lee SM, Chan MC, Wang BX, Baker DP, Sun B, Peiris JS, Nicholls JM, Fish EN (2010) Influenza virus non-structural protein 1 (NS1) disrupts interferon signaling. PLoS One 5(11):e13927. https://doi.org/10.1371/journal.pone.0013927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Othumpangat S, Noti JD, Blachere FM, Beezhold DH (2013) Expression of non-structural-1A binding protein in lung epithelial cells is modulated by miRNA-548an on exposure to influenza A virus. Virology 447(1–2):84–94. https://doi.org/10.1016/j.virol.2013.08.031

    Article  CAS  PubMed  Google Scholar 

  55. Zabrodskaya Y, Plotnikova M, Gavrilova N, Lozhkov A, Klotchenko S, Kiselev A, Burdakov V, Ramsay E, Purvinsh L, Egorova M, Vysochinskaya V, Baranovskaya I, Brodskaya A, Povalikhin R, Vasin A (2022) Exosomes released by influenza-virus-infected cells carry factors capable of suppressing immune defense genes in Naïve cells. Viruses 14(12):2690. https://doi.org/10.3390/v14122690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jamieson AM, Yu S, Annicelli CH, Medzhitov R (2010) Influenza virus-induced glucocorticoids compromise innate host defense against a secondary bacterial infection. Cell Host Microbe 7(2):103–114. https://doi.org/10.1016/j.chom.2010.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, Hoang DM, Chau NV, Khanh TH, Dong VC, Qui PT, Cam BV, Ha DQ, Guan Y, Peiris JS, Chinh NT, Hien TT, Farrar J (2006) Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 12(10):1203–1207. https://doi.org/10.1038/nm1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Islam A, Ferdous J, Islam S, Sayeed MA, Dutta Choudhury S, Saha O, Hassan MM, Shirin T (2021) Evolutionary dynamics and epidemiology of endemic and emerging coronaviruses in humans, domestic animals, and wildlife. Viruses 13(10):1908. https://doi.org/10.3390/v13101908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ghai RR, Carpenter A, Liew AY, Martin KB, Herring MK, Gerber SI, Hall AJ, Sleeman JM, VonDobschuetz S, Behravesh CB (2021) Animal reservoirs and hosts for emerging alphacoronaviruses and betacoronaviruses. Emerg Infect Dis 27(4):1015–1022. https://doi.org/10.3201/eid2704.203945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Do Nascimento GM, Bugybayeva D, Patil V, Schrock J, Yadagiri G, Renukaradhya GJ, Diel DG (2023) An Orf-Virus (ORFV)-based vector expressing a consensus H1 hemagglutinin provides protection against diverse swine influenza viruses. Viruses 15(4):994. https://doi.org/10.3390/v15040994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Borland S, Gracieux P, Jones M, Mallet F, Yugueros-Marcos J (2020) Influenza A virus infection in cats and dogs: a literature review in the light of the “One Health” concept. Front Public Health 20(8):83. https://doi.org/10.3389/fpubh.2020.00083

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

K.R. wrote the main manuscript text, selected Figure 1, and reviewed the manuscript

Corresponding author

Correspondence to Kevin Roe.

Ethics declarations

Competing interests

The author has no relevant financial or non-financial interests to disclose.

Ethics Approval

No ethical approval was required as this is a review article with no original research data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kevin Roe—Retired.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roe, K. Increased Fungal Infection Mortality Induced by Concurrent Viral Cellular Manipulations. Lung 201, 467–476 (2023). https://doi.org/10.1007/s00408-023-00642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-023-00642-6

Keywords

Navigation