Skip to main content
Log in

Approximated unsharp masking on equi-hue plane in RGB color space

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Unsharp masking is a common method of image sharpening. If unsharp masking is applied to each RGB component of a color image, the hue of the output image is changed from that of the input image. A hue-preserving unsharp masking method has been proposed thus far. However, the effect of image sharpening is slightly small. In this paper, we propose a new hue-preserving unsharp masking method that sharpens the image effectively. In the proposed method, componentwise unsharp masking is approximated by linear transformation satisfying Naik’s hue-preserving condition, and the gamut problem is solved by processing in an equi-hue plane in an RGB color space. In the experiments, the effectiveness of the proposed method is verified by qualitative and quantitative evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, N. Suetake, upon reasonable request.

References

  1. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  2. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. Int. Conf. Computer Vision. 839–846 (1998) https://doi.org/10.1109/ICCV.1998.710815

  3. Paris, S., Hasinoff, S.W., Kautz, J.: Local Laplacian filters: edge-aware image processing with a Laplacian pyramid. ACM Trans. Graph. 30(4), 1–12 (2011)

    Article  Google Scholar 

  4. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Patt. Anal. Mach. Intell. 35(6), 1397–1409 (2013). https://doi.org/10.1109/TPAMI.2012.213

    Article  Google Scholar 

  5. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via \(L_0\) gradient minimization. ACM Trans. Graph. 30(6), 1–12 (2011)

    Google Scholar 

  6. Li, Z., Zheng, J., Zhu, Z.: Content adaptive guided image filtering. In: Proc. IEEE Int. Conf. Multimedia and Expo. 1–6 (2014) https://doi.org/10.1109/ICME.2014.6890136

  7. Canh, T. N., Dinh, K. Q., Jeon, B.: Edge-preserving nonlocal weighting scheme for total variation based compressive sensing recovery. In: Proc. IEEE Int. Conf. Multimedia and Expo., pp. 1–5 (2014) https://doi.org/10.1109/ICME.2014.6890251

  8. Kou, F., Chen, W., Li, Z., Wen, C.: Content adaptive image detail enhancement. IEEE Signal Process. Lett. 22(2), 211–215 (2014). https://doi.org/10.1109/LSP.2014.2353774

    Article  ADS  Google Scholar 

  9. Yu, Z., Urahama, K.: Hue-preserving unsharp-masking for color image enhancement. In: IEICE Trans. Inf. Syst. E97-D, 12, 3236–3238 (2014) https://doi.org/10.1587/transinf.2014EDL8159

  10. Xie, Z.F., Tang, S., Huang, D.J., Ding, Y.D., Ma, L.Z.: Photographic appearance enhancement via detail-based dictionary learning. J. Comput. Sci. Technol. 32(3), 417–429 (2017). https://doi.org/10.1007/s11390-017-1733-z

    Article  Google Scholar 

  11. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S., Yan, S.: Sparse representation for computer vision and pattern recognition. In: Proc. IEEE. 98, 6, 1031–1044 (2010) https://doi.org/10.1109/JPROC.2010.2044470

  12. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006). https://doi.org/10.1109/TSP.2006.881199

    Article  ADS  MATH  Google Scholar 

  13. Son, H., Lee, G., Cho, S., Lee, S.: Naturalness-preserving image tone enhancement using generative adversarial networks. Compu. Graph. Forum. 38(7), 277–285 (2019). https://doi.org/10.1111/cgf.13836

    Article  Google Scholar 

  14. Zhu, J. Y., Park, T., Isola, P., Efros, A. A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proc. IEEE Int. Conf. Computer Vision., pp. 2223–2232 (2017)

  15. Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., Smolley, S. P.: Least squares generative adversarial networks. In: Proc. IEEE Int. Conf. Computer Vision., pp. 2794–2802 (2017)

  16. Naik, S.K., Murthy, C.A.: Hue-preserving color image enhancement without gamut problem. IEEE Trans. Image Process. 12(12), 1591–1598 (2003). https://doi.org/10.1109/TIP.2003.819231

    Article  ADS  Google Scholar 

  17. Ueda, Y., Misawa, H., Koga, T., Suetake, N., Uchino, E.: Hue-preserving color contrast enhancement method without gamut problem by using histogram specification. In: Proc. IEEE Int. Conf. Image Process. 1123–1127 (2018) https://doi.org/10.1109/ICIP.2018.8451308

  18. Kinoshita, Y., Kiya, H.: Hue-correction scheme based on constant-hue plane for deep-learning-based color-image enhancement. IEEE Access. 8, 9540–9550 (2020). https://doi.org/10.1109/ACCESS.2020.2964823

    Article  Google Scholar 

  19. Mukaida, M., Ueda, Y., Suetake, N.: Low-light image enhancement method by using a modified gamma transform for convex combination coefficients. In: Proc. IEEE Int. Conf. Image Process. 2866–2870 (2022) https://doi.org/10.1109/ICIP46576.2022.9897857

  20. University of Southern California, The USC-SIPI Image Database. https://sipi.usc.edu/database/. Accessed Aug 2022

  21. NASA, Retinex Image Processing. https://dragon.larc.nasa.gov/retinex/pao/news/. Accessed May 2019

  22. Kodak, E.: Kodak Lossless True Color Image Suite. https://r0k.us/graphics/kodak/. Accessed Aug 2022

  23. Hautiere, N., Tarel, J.P., Aubert, D., Dumont, E.: Blind contrast enhancement assessment by gradient rationing at visible edges. Image Anal. Stereol. 27(2), 87–95 (2008). https://doi.org/10.5566/ias.v27.p87-95

    Article  MathSciNet  MATH  Google Scholar 

  24. Raines, G.L.: Digital color analysis of color-ratio composite landsat scenes. In: Proc. 11th Int. Symp. Remote Sensing of Environment. 1463–1472 (1977)

  25. Komatsubara, H.: Study on Color-difference formula based on uniform color-difference space. Niigata University, Doctoral Thesis, (2007) (in Japanese)

  26. Ayub, W.A.R.W., Mohamad, M.: Image Re-colourisation in understanding the red-green colour blindness. Evol. Electric. Electron. Eng. 3(2), 929–935 (2022)

    Google Scholar 

  27. Xu, L., Li, Q., Liu, X., Xu, Q., Luo, M.R.: Gamut mapping based image enhancement algorithm for color deficiencies. Biomed. Opt. Express 12(11), 6882–6896 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ms. Yukino Kihara for helpful discussions. This work was supported by JSPS KAKENHI, Grant Number JP22KJ2342.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriaki Suetake.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukaida, M., Suetake, N. Approximated unsharp masking on equi-hue plane in RGB color space. Opt Rev 30, 516–525 (2023). https://doi.org/10.1007/s10043-023-00838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00838-4

Keywords

Navigation