Skip to main content
Log in

Effect of Cr Content on Hot Corrosion Behavior of Inconel Alloys in Molten LiCl–Li2O

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

The hot corrosion behaviors of Inconel alloys with different Cr contents (Inconel 600, 601, and 690), which are used widely in nuclear plants, were investigated in molten LiCl–Li2O salts. The hot corrosion behaviors were studied by measuring the mass and attack depth changes, surface and cross-sectional morphologies and elemental distributions, and compositional changes at the subscale and substrate scale as well as the spalled oxide scale. At 288 h, the weight losses of Inconel 601 and Inconel 690 were approximately four and twelve times higher, respectively, than that of Inconel 600. The corrosion products of all tested alloys were Cr2O3, NiO, and FeCr2O4. Inconel 600, which exhibited a dense and continuous external corrosion layer and an internal corrosion layer with localized corrosion behavior, exhibited superior corrosion resistance compared with those of Inconel 601 and 690, which showed a spalled external corrosion layer and an internal corrosion layer with uniform corrosion behavior. Thus, the corrosion resistance of the Inconel alloys tested in the hot lithium molten salts in an oxidizing atmosphere is closely related to the contents of the primary alloying elements in the alloys. Of the various alloys analyzed in this study, Inconel 600 exhibited the highest corrosion resistance. Thus, a Cr content of 16.30 wt% or less, Ni content of at least 73.66 wt%, and Fe content considerably lower than 8.15 wt% can result in excellent corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Rehman, M. H. Bidabadi, Y. Liang, et al., Corrosion Science 165, 108369 (2020). https://doi.org/10.1016/j.corsci.2019.108369.

    Article  CAS  Google Scholar 

  2. A. G. Fernández and L. F. Cabeza, Journal of Energy Storage 229, 101381 (2020). https://doi.org/10.1016/j.est.2020.101381.

    Article  Google Scholar 

  3. Y. Grosu, A. Anagnostopoulos, M. E. Navarro, Y. Ding, and A. Faik, Solar Energy Materials and Solar Cells 215, 110650 (2020). https://doi.org/10.1016/j.solmat.2020.110650.

    Article  CAS  Google Scholar 

  4. A. Ruh and M. Spiegel, Corrosion Science 48, 679 (2006). https://doi.org/10.1016/j.corsci.2005.02.015.

    Article  CAS  Google Scholar 

  5. G. Z. Chen and D. J. Fray, TW Nature 407, 361 (2000). https://doi.org/10.1038/35030069.

    Article  CAS  Google Scholar 

  6. J. E. Indacochea, J. L. Smith, K. R. Litko, E. J. Karell, and A. G. Rarez, Oxidation of Metals 55, 1 (2001). https://doi.org/10.1023/A:1010333407304.

    Article  CAS  Google Scholar 

  7. M. Lee, C. W. Lee, H. C. Ham, J. Han, S. P. Yoon, and K. B. Lee, International Journal of Hydrogen Energy 42, 16235 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.096.

    Article  CAS  Google Scholar 

  8. S. A. Song, H. T. Kim, K. Kim, S. N. Lim, S. P. Yoon, and S. C. Jang, International Journal of Hydrogen Energy 44, 12085 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.080.

    Article  CAS  Google Scholar 

  9. F. Sher, N. K. Al-Shara, S. Z. Iqbal, Z. Jahan, and G. Z. Chen, International Journal of Hydrogen Energy 45, 28260 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.183.

    Article  CAS  Google Scholar 

  10. S. W. McAlpine, N. C. Skowronski, W. Zhou, G. T. Zheng, and M. P. Short, Journal of Nuclear Materials 532, 151994 (2020). https://doi.org/10.1016/j.jnucmat.2020.151994.

    Article  CAS  Google Scholar 

  11. Q. Liu, Z. Wang, W. Liu, H. Yin, Z. Tang, and Y. Qian, Corrosion Science 180, 109183 (2021). https://doi.org/10.1016/j.corsci.2020.109183.

    Article  CAS  Google Scholar 

  12. M. A. Uusitalo, P. M. Vuoristo, and T. A. Mäntylä, Corrosion Science 46, 1311 (2004). https://doi.org/10.1016/j.corsci.2003.09.026.

    Article  CAS  Google Scholar 

  13. W. B. Kim, S. C. Kwon, S. H. Cho, and J. H. Lee, Corrosion Science. 170, 108664 (2020). https://doi.org/10.1016/j.corsci.2020.108664.

    Article  CAS  Google Scholar 

  14. D. A. Shores and B. P. Mohanty, Corrosion Science 46, 2909 (2004). https://doi.org/10.1016/j.corsci.2004.04.013.

    Article  CAS  Google Scholar 

  15. G. Lei, C. Li, Z. Jiang, and H. Huang, Corrosion Science 165, 108408 (2020). https://doi.org/10.1016/j.corsci.2019.108408.

    Article  CAS  Google Scholar 

  16. Y. Wu, B. Leng, X. Li, L. Jiang, X. Ye, Y. Chen, X. Yang, Z. Li, and X. Zhou, Journal of Nuclear Materials 542, 152529 (2020). https://doi.org/10.1016/j.jnucmat.2020.152529.

    Article  CAS  Google Scholar 

  17. W. H. Doniger, C. Falconer, M. Elbakhshwan, K. Britsch, A. Couet, and K. Sridharan, Corrosion Science 174, 108823 (2020). https://doi.org/10.1016/j.corsci.2020.108823.

    Article  CAS  Google Scholar 

  18. B. U. Yoo, S. C. Kwon, S. H. Cho, H. H. Nersisyan, and J. H. Lee, Journal of Alloys and Compounds 771, 924 (2019). https://doi.org/10.1016/j.jallcom.2018.09.001.

    Article  CAS  Google Scholar 

  19. X. Zhuang, W. Liu, and X. Xu, Solar Energy 189, 254 (2019). https://doi.org/10.1016/j.solener.2019.07.065.

    Article  CAS  Google Scholar 

  20. B. Zhu and G. Lindbergh, Electrochimica Acta 46, 2593 (2001). https://doi.org/10.1016/S0013-4686(01)00471-6.

    Article  CAS  Google Scholar 

  21. M. Spiegel, P. Biedenkopf, and H. J. Grabke, Corrosion Science 39, 1193 (1997). https://doi.org/10.1016/S0010-938X(97)00020-6.

    Article  CAS  Google Scholar 

  22. T. Tz, Materials Chemistry and Physics 87, 201 (2004). https://doi.org/10.1016/j.matchemphys.2004.05.039.

    Article  CAS  Google Scholar 

  23. S. Mitsushima, N. Kamiya, and K. I. Ota, Journal of the Electrochemical Society 137, 2713 (1990). https://doi.org/10.1149/1.2087031.

    Article  CAS  Google Scholar 

  24. X. Yang, L. Yang, J. Wang, Z. Chen, M. Chen, J. Zhang, and F. Wang, Corrosion Science 221, 111377 (2023). https://doi.org/10.1016/j.corsci.2023.111377.

    Article  CAS  Google Scholar 

  25. S. K. Gill, J. Sure, Y. Wang, B. Layne, L. He, S. Mahurin, J. F. Wishart, and K. Sasaki, Corrosion Science 179, 109105 (2021). https://doi.org/10.1016/j.corsci.2020.109105.

    Article  CAS  Google Scholar 

  26. B. Wei, C. Chen, J. Xu, L. Yang, Y. Jia, Y. Du, M. Guo, C. Sun, Z. Wang, and F. Wang, Corrosion Science 195, 109996 (2022). https://doi.org/10.1016/j.corsci.2021.109996.

    Article  CAS  Google Scholar 

  27. J. Feng, L. Mao, G. Yuan, Y. Zhao, J. Vidal, and L. E. Liu, Corrosion Science 197, 110097 (2022). https://doi.org/10.1016/j.corsci.2022.110097.

    Article  CAS  Google Scholar 

  28. Z. Xu, B. Guan, X. Wei, J. Lu, J. Ding, and W. Wang, Solar Energy 238, 216 (2022). https://doi.org/10.1016/j.solener.2022.03.074.

    Article  CAS  Google Scholar 

  29. X. Li, B. Leng, X. Ye, C. Liu, L. Chang, and X. Zhou, Corrosion Science. 194, 109940 (2022). https://doi.org/10.1016/j.corsci.2021.109940.

    Article  CAS  Google Scholar 

  30. Q. Liu, X. Liu, G. Hao, and H. Xu, Corrosion Science 213, 111001 (2023). https://doi.org/10.1016/j.corsci.2023.111001.

    Article  CAS  Google Scholar 

  31. H. Sun, P. Zhang, and J. Wang, Corrosion Science 143, 187 (2018). https://doi.org/10.1016/j.corsci.2018.08.021.

    Article  CAS  Google Scholar 

  32. X. Wang, Z. Liu, K. Cheng, Y. Shen, and J. Li, Corrosion Science 221, 111308 (2023). https://doi.org/10.1016/j.corsci.2023.111308.

    Article  CAS  Google Scholar 

  33. B. Meng, J. Wang, L. Yang, M. Chen, S. Zhu, and F. Wang, Journal of Materials Science & Technology 132, 69 (2023). https://doi.org/10.1016/j.jmst.2022.04.054.

    Article  Google Scholar 

  34. X. L. Li, S. M. He, X. T. Zhou, P. Huai, Z. J. Li, A. G. Li, and X. H. Yu, Journal of Nuclear Materials 464, 342 (2015). https://doi.org/10.1016/j.jnucmat.2015.05.007.

    Article  CAS  Google Scholar 

  35. T. S. Sidhu, S. Prakash, and R. D. Agrawal, Materials Science and Engineering: A 430, 64 (2006). https://doi.org/10.1016/j.msea.2006.05.099.

    Article  CAS  Google Scholar 

  36. J. Wang, J. Sun, B. Zou, X. Zhou, S. Dong, L. Li, J. Jiang, L. Deng, and X. Cao, Ceramics International 43, 10415 (2017). https://doi.org/10.1016/j.ceramint.2017.05.077.

    Article  CAS  Google Scholar 

  37. E. M. Zahrani and A. M. Alfantazi, Corrosion Science 85, 60 (2014). https://doi.org/10.1016/j.corsci.2014.03.034.

    Article  CAS  Google Scholar 

  38. H. Ai, X. X. Ye, L. Jiang, B. Leng, M. Shen, Z. Li, Y. Jia, J. Q. Wang, X. Zhou, Y. Xie, and L. Xie, Corrosion Science 149, 218 (2019). https://doi.org/10.1016/j.corsci.2019.01.012.

    Article  CAS  Google Scholar 

  39. X. Wang, L. Xin, F. Wang, S. Zhu, H. Wei, and X. Wang, Journal of Materials Science & Technology 30, 867 (2014). https://doi.org/10.1016/j.jmst.2014.01.001.

    Article  CAS  Google Scholar 

  40. S. Mahini, S. K. Asl, T. Rabizadeh, and H. Aghajani, Surface and Coatings Technology 397, 125949 (2020). https://doi.org/10.1016/j.surfcoat.2020.125949.

    Article  CAS  Google Scholar 

  41. S. H. Cho, S. S. Hong, D. S. Kang, J. M. Hur, and H. S. Lee, Metals and Materials International 15, 51 (2009). https://doi.org/10.1007/s12540-009-0051-6.

    Article  CAS  Google Scholar 

  42. S. H. Cho, J. M. Hur, C. S. Seo, J. S. Yoon, and S. W. Park, Journal of Alloys and Compounds 468, 263 (2009). https://doi.org/10.1016/j.jallcom.2007.12.094.

    Article  CAS  Google Scholar 

  43. S. H. Cho, S. C. Kwon, D. Y. Kim, W. S. Choi, Y. S. Kim, and J. H. Lee, Corrosion Science 151, 20 (2019). https://doi.org/10.1016/j.corsci.2019.01.041.

    Article  CAS  Google Scholar 

  44. W. B. Kim, W. S. Choi, K. S. Lim, S. H. Cho, and J. H. Lee, Coatings 11, 328 (2021). https://doi.org/10.3390/coatings11030328.

    Article  CAS  Google Scholar 

  45. H. Y. Woo, G. S. Lim, W. B. Kim, W. S. Choi, S. H. Cho, K. T. Park, and J. H. Lee, Corrosion Engineering Science and Technology. 56, 513 (2021). https://doi.org/10.1080/1478422X.2021.1916689.

    Article  CAS  Google Scholar 

  46. A. Roine, HSC Chemistry 7.1. (Finland: Outotec. Pori, 2018)

  47. F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995). https://doi.org/10.1007/BF01046725.

    Article  CAS  Google Scholar 

  48. H. Izuta and Y. Komura, Journal of the Japan Institute of Metals 58, 1196 (1994). https://doi.org/10.2320/jinstmet1952.58.10_1196.

    Article  CAS  Google Scholar 

  49. G. C. Wood, Corrosion Science 2, 173 (1962). https://doi.org/10.1016/0010-938X(62)90019-7.

    Article  CAS  Google Scholar 

  50. H. F. Liu, X. Xiong, X. B. Li, and Y. L. Wang, Corrosion Science 85, 87 (2014). https://doi.org/10.1016/j.corsci.2014.04.001.

    Article  CAS  Google Scholar 

  51. U. R. Evans, An Introduction to Metallic Corrosion, (Edward, London, 1948).

    Google Scholar 

  52. S. Ling, Oxidation of Metalls 40, 179 (1993). https://doi.org/10.1007/BF00665264.

    Article  CAS  Google Scholar 

  53. H. M. Tawancy, Oxidation of Metals 45, 323 (1996). https://doi.org/10.1007/BF01046988.

    Article  CAS  Google Scholar 

  54. D. Caplan and M. Cohen, Corrosion 15, 57 (1959). https://doi.org/10.5006/0010-9312-15.3.57.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Ministry of Trade, Industry & Energy (MOTIE), Korea.

Funding

This work was funded by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0023676, HRD Program for Industrial Innovation) and the Industrial Strategic Technology Development Program of MOTIE (High Purity Metal Refining Technology for Titanium Metal with Zero Toxic Gas Emission (Grant Number 20010585)).

Author information

Authors and Affiliations

Authors

Contributions

KSL: Conceptualization, Formal analysis, Investigation, Methodology, Validation, Visualization, Draft preparation. WSC: Software, Methodology. WBK: Investigation, Validation. SHC: Conceptualization, Data curation, JHL: Conceptualization, Supervision, Data Curation, Project administration. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jong-Hyeon Lee.

Ethics declarations

Conflict of interest

The authors have no competing interests to disclose that are relevant to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, KS., Choi, WS., Kim, WB. et al. Effect of Cr Content on Hot Corrosion Behavior of Inconel Alloys in Molten LiCl–Li2O. High Temperature Corrosion of mater. 100, 345–358 (2023). https://doi.org/10.1007/s11085-023-10180-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10180-4

Keywords

Navigation