Skip to main content
Log in

New Development in Decarburization Research and Its Application to Spring Steels

  • Review
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Recently there was a new wave of research activities studying the decarburization behavior of spring steels with the main focus on the formation mechanism of a columnar ferrite layer within a certain temperature range which could not be explained by conventional decarburization theories. A new theory successfully developed recently in interpreting the oxide scale reduction mechanism on steel was then developed further and applied to interpret the observed columnar ferrite formation on spring steels. The essence of the new theory is that steel decarburization in the presence of a FeO scale on the steel surface is caused and governed by the reaction between the FeO scale and dissolved carbon in the steel, and therefore, the carbon concentration on the steel surface is determined by the FeO-steel interface equilibrium and cannot be treated as negligible within the temperature range where ferrite is able to form, because the equilibrium interface carbon concentration is in the same magnitude as the carbon solubility in ferrite. The new theory and available solutions for different decarburization scenarios using decarburization of 60Si2MnA as an example are summarized in this review. Explanations are given to interpret discrepancies between experimental observations and theoretical predictions. New areas for future research are also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. A. Bramley and K. F. Allen, Engineering (London) 133, 92 (1932).

    CAS  Google Scholar 

  2. J. K. Stanley, Iron Age 151, 31 (1943).

    CAS  Google Scholar 

  3. W. A. Pennington, Transactions of the American Society for Metals 37, 48 (1946).

    Google Scholar 

  4. N. Birks and W. Jackson, Journal of Iron and Steel Institute 208, 81 (1970).

    CAS  Google Scholar 

  5. N. Birks, Decarburization, (The Iron and Steel Institute, London, 1970).

    Google Scholar 

  6. N. Birks and A. Nicholson, Mathematical Models in Metallurgical Process Development, (ISI Publication 123, The Iron and Steel Institute, London, 1970).

    Google Scholar 

  7. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 2nd edn. (Cambridge University Press, Cambridge, 2006).

  8. R. N. Wright, Steel Decarburization (ASM Handbook, ASM International 2014).

  9. J. Baud, A. Ferrier, J. Manenc, and J. Bernard, Oxidation of Metals 9, 69 (1975).

    CAS  Google Scholar 

  10. M. Nomura, H. Morimoto, and M. Toyama, ISIJ International 40, 619 (2000).

    CAS  Google Scholar 

  11. D. Li, D. Anghelina, D. Burzic, J. Zamberger, R. Kienreich, H. Schifferi, W. Krieger, and E. Kozeschnik, Steel Research International 80, 298 (2009).

    CAS  Google Scholar 

  12. D. Li, D. Anghelina, D. Burzic, W. Krieger, and E. Kozeschnik, Steel Research International 80, 304 (2009).

    CAS  Google Scholar 

  13. Y. Zhang, L. Liu, C. Zhou, and J. Xiao, International Journal of Minerals. Metallurgy and Materials 19, 116 (2012).

    CAS  Google Scholar 

  14. C. L. Zhang, L. Y. Zhou, and Y. Z. Liu, International Journal of Minerals. Metallurgy and Materials 20, 720 (2013).

    CAS  Google Scholar 

  15. S. Choi and S. Zwaag, ISIJ International 52, 549 (2012).

    CAS  Google Scholar 

  16. S. Choi and Y. Lee, ISIJ International 54, 1682 (2014).

    CAS  Google Scholar 

  17. X. Shi, L. Zhao, W. Wang, B. Zeng, L. Zhao, Y. Shan, M. Shen, and K. Yang, Transactions of Materials and Heat Treatment 34, 47 (2013).

    Google Scholar 

  18. Y. Liu, W. Zhang, Q. Tong, and L. Wang, ISIJ International 54, 1920 (2014).

    CAS  Google Scholar 

  19. F. Zhao, C. Zhang, Q. Xiu, Y. Tan, S. Zhang, and Y. Liu, Materials Science Forum 817, 132 (2015).

    Google Scholar 

  20. Y. Liu, W. Zhang, Q. Tong, and Q. Sun, International Journal of Iron and Steel Research 23, 1316 (2016).

    Google Scholar 

  21. F. Zhao, C. L. Zhang, and Y. Z. Liu, Arch. Metall. Mater. 61, 1715 (2016).

    Google Scholar 

  22. X. Xu, K. Shen, Z. Jiang, and Y. Zhang, Hot Working Technology 46, 224 (2017).

    Google Scholar 

  23. K. Zhang, Y. Chen, Y. Sun, and Z. Xu, Acta Metallurgica Sinica 54, 1350 (2018).

    CAS  Google Scholar 

  24. H. Zhao, J. Gao, J. Qi, Z. Tian, H. Chen, H. Zhang, and C. Wang, Journal of Materials Research and Technology 15, 1076 (2021).

    CAS  Google Scholar 

  25. Y. Liu and X. Liu, Heat Treatment of Metals 44, 115 (2019).

    CAS  Google Scholar 

  26. J. Liu, B. Jiang, C. Zhang, G. Li, Y. Dai, and L. Chen, Journal of Materials Engineering and Performance 16, 8677 (2022).

    Google Scholar 

  27. R. Y. Chen, Oxidation of Metals 89, 1 (2018).

    CAS  Google Scholar 

  28. Y. R. Chen, X. Xu, and Y. Liu, Oxidation of Metals 93, 105 (2020).

    CAS  Google Scholar 

  29. Y. R. Chen, F. Zhang, and Y. Liu, Metallurgical and Materials Transactions A 51, 1808 (2020).

    CAS  Google Scholar 

  30. Y. R. Chen, Y. Liu, and C. Li, Materials at High Temperatures 27, 279 (2020).

    Google Scholar 

  31. W. Cao, S. -L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W. A. Oates, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 33, 328 (2009).

  32. PanFe, Thermodynamic database for Fe-based alloys (CompuTherm, LLC: Middleton WI, 2019).

  33. Yisheng R. Chen, Oxidation of Metals 93, 1 (2020).

    CAS  Google Scholar 

  34. Y. Liu, W. Zhang, Q. Tong, et al., Heat Treatment of Metals 42, 143 (2017).

    CAS  Google Scholar 

  35. Z. W. Zhang, G. Chen, and G. L. Chen, Acta Materialia 55, 5988 (2007).

    CAS  Google Scholar 

  36. Flemings, Solidification Processing (McGraw-Hill, Inc., New York, 1974).

  37. Y. R. Chen, F. Zhang, Y. Liu, and H. An, Materials at High Temperatures 39, 21 (2022).

    CAS  Google Scholar 

  38. W. A. Pennington, Transactions of the American Society of Metals 42, 213 (1949).

    Google Scholar 

  39. F. D. Richardson and J. H. E. Jeffes, Journal of Iron Steel Institute 160, 261 (1948).

    CAS  Google Scholar 

  40. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, (Pergamon Press, Oxford, 1979).

    Google Scholar 

  41. J. A. Lobo and G. H. Gaiger, Metallurgical Transactions A 7A, 1347 (1976).

    CAS  Google Scholar 

  42. Rodney P. Smith, Transactions of TMS-AIME 224, 105 (1962).

    CAS  Google Scholar 

  43. T. Ellis, I. M. Davidson, and C. Bodsworth, Journal of the Institute of Iron and Steel Institute 201, 582 (1963).

    CAS  Google Scholar 

  44. H. K. D. H. Bhadeshia, Progress in Materials Science 29, 321 (1985).

    CAS  Google Scholar 

  45. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 59, 433 (2003).

    CAS  Google Scholar 

  46. C. Wagner, and W. Jost, Diffusion in Solids, Liquids, and Gases (Academic Press Inc., New York, NY, 1960).

    Google Scholar 

  47. J. H. Swisher, Metallurgical Transactions A 16A, 763 (1968).

    Google Scholar 

  48. A. R. Marder, S. M. Perpetua, J. A. Kowalik, and E. T. Stephenson, Metallurgical Transactions A 16A, 1160 (1985).

    CAS  Google Scholar 

  49. M. A. Krishtal, Diffusion processes in iron alloys (Israel Program for Scientific Translations, Jerusalem, 1970).

    Google Scholar 

  50. R. Collin, S. Gunnarson, and D. Thulin, Journal of the Iron and Steel Institute 210, 785 (1972).

    CAS  Google Scholar 

  51. R. M. Asimov, Transaction of the Metallurgical Society of AIME 230, 611 (1964).

    Google Scholar 

  52. R. P. Smith, Acta Metallurgica 1, 578 (1953).

    CAS  Google Scholar 

  53. C. Wells, W. Batz, and R. F. Mehl, Transaction of AIME 188, 553 (1950); Journal of Metals 2, 553–560 (1950).

  54. G. Parrish and G. S. Harper, Production Gas Carburising, (Pergamon Press, Oxford, New York, 1985), pp. 114–116.

    Google Scholar 

  55. M. A. Krishtal, Diffusion processes in iron alloys (Israel Program for Scientific Translations, Jerusalem, 1970).

  56. S. S. Babu and H. K. D. H. Bhadeshia, Journal of Materials Science Letters 14, 314 (1995).

    CAS  Google Scholar 

  57. S.-J. Lee, D. K. Matlock, and C. J. Von Tyne, ISIJ International 51, 1903 (2011).

    CAS  Google Scholar 

  58. S.-J. Lee, D. K. Matlock, and C. J. Van Tyne, Scripta Materialia 64, 805 (2011).

    CAS  Google Scholar 

  59. S. K. Roy, H. J. Grabke, and W. W. Düsseldorf, Arch. Eisenhüttenwess 51, 91 (1980).

    CAS  Google Scholar 

  60. H. K. D. H. Bhadeshia, Metallurgical and Materials Transactions A, 41A, 1605 (2010); L. S. Darken, Transactions of AIME 180, 430 (1949).

  61. M. E. Blanter, Diffusion processes in austenite and hardenability of alloyed steels, Thesis, (Moskovski Institut Stali, Moscow, 1949).

  62. A. E. Lord Jr. and D. N. Beshers, Acta Melallurgica 14, 1659 (1966).

    CAS  Google Scholar 

  63. J. K. Stanley, Metal Transactions 185, 752 (1949).

    Google Scholar 

  64. C. G. Homan, Acta Metallurgica 12, 1071 (1964).

    CAS  Google Scholar 

  65. A. A. Vasilyev and P. A. Golikov, Materials Physics and Mechaics 39, 111 (2018).

    CAS  Google Scholar 

  66. R. B. Mclellan and P. Chraska, Materials Science and Engineering 7, 305 (1971).

    CAS  Google Scholar 

  67. E. Jiang and E. A. Carter, Physical Review B 67, 214103–214111 (2003).

    Google Scholar 

  68. J. R. G. da Silva and Rex B. McLellan, Materials Science and Engineering 26, 83 (1976).

  69. N. L. Bowen and J. F. Schairer, American Journal of Science. Series 5, 177 (1932).

    Google Scholar 

  70. P. Wu, G. Eriksson, A. D. Pelton, and M. Blander, ISIJ International 33, 26 (1993).

    CAS  Google Scholar 

  71. A. Muan, Transaction of AIME 203, 965 (1955); Journal of Metals 7, 965 (1955).

  72. A. Muan and E. F. Osborn, Phase Equilibria among Oxides in Steelmaking, (Addison-Wesley Publishing Company, Massachusetts, 1965).

    Google Scholar 

  73. V. Raghavan, in: Phase Diagrams of Ternary Iron Alloys, Part 5: Ternary Systems Containing Iron and Oxygen, (The Indian Institute of Metals, Calcutta, 1989), p. 260.

    Google Scholar 

Download references

Funding

There was no funding provided for this work.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript and most of the figures and all tables were prepared by Dr YRC. Dr FZ computed thermodynamic data, assisted in the computation of the phase diagrams and assisted in the interpretation of thermodynamic principles related to the interpretation of the research results. Both authors reviewed the manuscript.

Corresponding author

Correspondence to Yisheng R. Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.R., Zhang, F. New Development in Decarburization Research and Its Application to Spring Steels. High Temperature Corrosion of mater. 100, 109–143 (2023). https://doi.org/10.1007/s11085-023-10181-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10181-3

Keywords

Navigation