Skip to main content
Log in

Bacteriophages and Their Endolysin: An Alternative Therapeutic Approach for Bovine Mastitis

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Mastitis is one of the most prevalent and serious disease in bovines and led to high economic loss in the dairy industry. Mastitis dramatically reduces the reproduction abilities of cows. Despite significant progress in controlling and treating this disease, it is still frequent. Mastitis risks public health if milk from treated animals is taken by humans. Multiple factors are responsible for this disease, but bacterial mastitis is the most prevalent and threatening. The emergence of drug-resistant bacterial strains makes mastitis untreatable. Misuse of antibiotics in animal therapy is responsible for this issue, which resulted in the creation of strains that are multidrug resistant. This antibiotic resistance among bacteria is alarming. There is a need for an alternative treatment to cure mastitis. Bacteriophages are viruses, which kill bacteria. The effectiveness of bacteriophages and their endolysin against different bacterial infections causing mastitis has been approved from the results of various studies. Phage therapy is used as both a treatment and preventive measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Abdelrahman, M.A., Khadr, A.M., Mahmoud, et al., Occurrence of clinical and subclinical mastitis and associated risk factors in lactating goats with special reference to dry period infection and teat skin microflora, Alexandria J. Vet. Sci., 2020, vol. 64, no. 2, pp. 95–101.

    Article  Google Scholar 

  2. Abdi, R.D., Gillespie, B.E., Ivey, S., et al., Antimicrobial resistance of major bacterial pathogens from dairy cows with high somatic cell count and clinical mastitis, Animals, 2021, vol. 11, no. 1, p. 131.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abebe, R., Hatiya, H., and Abera, M., et al., Bovine mastitis: Prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia, BMC Vet. Res., 2016, vol. 12, p. 270.

  4. Abril, A.G., Carrera, M., Böhme, K., et al., Proteomic characterization of antibiotic resistance in listeria and production of antimicrobial and virulence factors, Int. J. Mol. Sci., 2021, vol. 22, no. 15, p. 8141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. An, R., Gao, M., Meng, Y., et al., Infective mastitis due to bovine-associated Streptococcus dysgalactiae contributes to clinical persistent presentation in a murine mastitis model, Vet. Med. Sci., 2021, vol. 7, no. 5, pp. 1600–1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ashfaq, M., Razzaq, A., and Muhammad, G., Economic analysis of dairy animal diseases in Punjab: A case study of Faisalabad district, J. Anim. Plant Sci., 2015, vol. 25, no. 5. pp. 1482–1495.

    Google Scholar 

  7. Ashraf, A. and Imran, M., Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis, Anim. Health Res. Rev., 2020, vol. 21, no. 1, pp. 36–49.

    Article  PubMed  Google Scholar 

  8. Awandkar, S.P., Kulkarni, M.B., and Khode, N.V., Bacteria from bovine clinical mastitis showed multiple drug resistance, Vet. Res. Commun., 2022, vol. 46, no. 1, pp. 147–158.

    Article  PubMed  Google Scholar 

  9. Azam, A.H. and Tanji, Y., Bacteriophage-host arm race: An update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy, Appl. Microbiol. Biotechnol., 2019, vol. 103, no. 5, pp. 2121–2131.

    Article  CAS  PubMed  Google Scholar 

  10. Bachaya, H.A., Raza, M.A., Murtaza, S., and Akbar, I.U.R., Subclinical bovine mastitis in Muzaffar Garh district of Punjab (Pakistan), J. Anim. Plant Sci., 2011, vol. 21, no. 1, pp. 16–19.

    Google Scholar 

  11. Balemi, A., Gumi, B., Amenu, K., et al., Prevalence of mastitis and antibiotic resistance of bacterial isolates from CMT positive milk samples obtained from dairy cows, camels, and goats in two pastoral districts in Southern Ethiopia, Animals, 2021, vol. 11, no. 6, p. 1530.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bennett, S., Ben Said, L., Lacasse, P., et al., Susceptibility to nisin, bactofencin, pediocin and reuterin of multidrug resistant Staphylococcus aureus, Streptococcus dysgalactiae and Streptococcus uberis causing bovine mastitis, Antibiotics, 2021, vol. 10, no. 11, p. 1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boireau, C., Cazeau, G., Jarrige, N., et al., Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France, 2006–2016, J. Dairy Sci., 2018, vol. 101, no. 10, pp. 9451–9462.

    Article  CAS  PubMed  Google Scholar 

  14. Botelho, A.C., Ferreira, A.F., Fracalanzza, S.E., et al., A perspective on the potential zoonotic role of Streptococcus agalactiae: Searching for a missing link in alternative transmission routes, Front. Microbiol., 2018, vol. 9, p. 608.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bradley, A.J. and Green, M.J., A study of the incidence and significance of intramammary enterobacterial infections acquired during the dry period, J. Dairy. Sci., 2000, vol. 83, no. 9, pp. 1957–1965.

    Article  CAS  PubMed  Google Scholar 

  16. Burvenich, C., Van Merris, V., Mehrzad, J., et al., Severity of E. coli mastitis is mainly determined by cow factors, Vet. Res., 2003, vol. 34, no. 5, pp. 521–564.

    Article  PubMed  Google Scholar 

  17. Capurro, A., Aspán, A., Unnerstad, H.E., et al., Identification of potential sources of Staphylococcus aureus in herds with mastitis problems, J. Dairy Sci., 2010, vol. 93, no. 1, pp. 180–191.

    Article  CAS  PubMed  Google Scholar 

  18. Cebron, N., Maman, S., Walachowski, S., et al., Th17-related mammary immunity, but not a high systemic Th1 immune response is associated with protection against E. coli mastitis, NPJ Vaccines, 2020, vol. 5, p. 108.

  19. Cheng, J., Zhang, J., Han, B., et al., Klebsiella pneumoniae isolated from bovine mastitis is cytopathogenic for bovine mammary epithelial cells, J. Dairy Sci., 2020, vol. 103, no. 4, pp. 3493–3504.

    Article  CAS  PubMed  Google Scholar 

  20. Colavecchio, A., Cadieux, B., Lo, A., and Goodridge, L.D., Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family—A review, Front. Microbiol., 2017, vol. 8, p. 1108.

    Article  PubMed  PubMed Central  Google Scholar 

  21. De, U.K. and Mukherjee, R., Activity of cyclooxygenase-2 and nitric oxide in milk leucocytes following intramammary inoculation of a bio-response modifier during bovine Staphylococcus aureus subclinical mastitis, Vet. Rese. Commun., 2014, vol. 38, no. 3, pp. 201–207.

    Article  CAS  Google Scholar 

  22. Duse, A., Persson-Waller, K., and Pedersen, K., Microbial aetiology, antibiotic susceptibility and pathogen-specific risk factors for udder pathogens from clinical mastitis in dairy cows, Animals, 2021, vol. 11, no. 7, p. 2113.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Edmondson, P., Blitz therapy for the eradication of Streptococcus agalactiae infections in dairy cattle, In Practice, 2011, vol. 33, no. 1, pp. 33–37.

    Article  Google Scholar 

  24. El-Ashker, M., Gwida, M., Monecke, S., et al., Antimicrobial resistance pattern and virulence profile of S. aureus isolated from household cattle and buffalo with mastitis in Egypt, Vet. Microbiol., 2020, vol. 240, p. 108535.

    Article  CAS  PubMed  Google Scholar 

  25. El-Sayed, A. and Kamel, M., Bovine mastitis prevention and control in the post-antibiotic era, Trop. Anim. Health Prod., 2021, vol. 53, no. 2, p. 236.

    Article  PubMed  Google Scholar 

  26. Fessia, A.S. and Odierno, L.M., Potential factors involved in the early pathogenesis of Streptococcus uberis mastitis: A review, Folia Microbiol., 2021, vol. 66, no. 4, pp. 509–523.

    Article  CAS  Google Scholar 

  27. Ganaie, M.Y., Qureshi, S., Kashoo, Z., et al., Isolation and characterization of two lytic bacteriophages against Staphylococcus aureus from India: Newer therapeutic agents against Bovine mastitis, Vet. Res. Commun., 2018, vol. 42, no. 4, pp. 289–295.

    Article  CAS  PubMed  Google Scholar 

  28. Garcia, S.N., Osburn, B.I., and Cullor, J.S., A one health perspective on dairy production and dairy food safety, One Health, 2019, vol. 7, p. 100086.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gill, J.J., Pacan, J.C., Carson, M.E., et al., Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle, Antimicrob. Agents Chemother., 2006, vol. 50, no. 9, pp. 2912–2918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goldstone, R.J., Harris, S., and Smith, D.G., Genomic content typifying a prevalent clade of bovine mastitis-associated Escherichia coli, Sci. Rep., 2016, vol. 6, p. 30115.

  31. Gomes, F. and Henriques, M., Control of bovine mastitis: old and recent therapeutic approaches, Curr. Microbiol., 2016, vol. 72, no. 4, pp. 377–382.

    Article  CAS  PubMed  Google Scholar 

  32. Guo, M., Gao, Y., Xue, Y., et al., Bacteriophage cocktails protect dairy cows against mastitis caused by drug resistant Escherichia coli infection, Front. Cell. Infect. Microbiol., 2021, vol. 11, p. 690377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hamza, A., Perveen, S., Abbas, Z., and Rehman, S.U., The lytic SA phage demonstrate bactericidal activity against mastitis causing Staphylococcus aureus, Open Life Sci., 2016, vol. 11, no. 1, pp. 39–45.

    Article  CAS  Google Scholar 

  34. Han, J.E., Kim, J.H., Hwang, S.Y., et al., Isolation and characterization of a Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis, Res. Vet. Sci., 2013, vol. 95, no. 2, pp. 758–763.

    Article  CAS  PubMed  Google Scholar 

  35. Holko, I., Tančin, V., Vršková, M., and Tvarožková, K., Prevalence and antimicrobial susceptibility of udder pathogens isolated from dairy cows in Slovakia, J. Dairy Res., 2019, vol. 86, no. 4, pp. 436–439.

    Article  CAS  PubMed  Google Scholar 

  36. Ijaz, M., Mehmood, K., Durrani, A.Z., et al., Treatment of chronic mastitis in a dairy cow: A case report, Global Vet., 2014, vol. 13, no. 1, pp. 01–04.

  37. Ismail, Z.B. and Abutarbush, S.M., Molecular characterization of antimicrobial resistance and virulence genes of Escherichia coli isolates from bovine mastitis, Vet. World, 2020, vol. 13, no. 8, p. 1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jackson, L.R., Farin, C.E., and Whisnant, S., Tumor necrosis factor alpha inhibits in vitro bovine embryo development through a prostaglandin mediated mechanism, J. Anim. Sci. Biotechnol., 2012, vol. 3, no. 1, p. 7.

  39. Jingar, S.C., Mahendra, S., and Roy, A.K., Economic losses due to clinical mastitis in cross-bred cows, J. Dairy Vet. Sci., 2017, vol. 3, no. 2, p. 555606.

    Google Scholar 

  40. Kabelitz, T., Aubry, E., van Vorst, K., et al., The role of Streptococcus spp. in bovine mastitis, Microorganisms, 2021, vol. 9, no. 7, p. 1497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaczorowski, Ł., Powierska-Czarny, J., Wolko, Ł., et al., The influence of bacteria causing subclinical mastitis on the structure of the cow’s milk microbiome, Molecules, 2022, vol. 27, no. 6, p. 1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kassa, F., Ayano, A.A., Abera, M., and Kiros, A., Longitudinal study of bovine mastitis in Hawassa and Wendo Genet small holder dairy farms, Global J. Sci. Front. Res., 2014, vol. 14, pp. 34–41.

    Google Scholar 

  43. Keane, O.M., Symposium review: Intramammary infections—Major pathogens and strain-associated complexity, J. Dairy Sci., 2019, vol. 102, no. 5, pp. 4713–4726.

    Article  CAS  PubMed  Google Scholar 

  44. Keefe, G., Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis, Vet. Clin. North Am.: Food Anim. Pract., 2012, vol. 28, no. 2, pp. 203–216.

    PubMed  Google Scholar 

  45. Khan, A., Mushtaq, M.H., Din Ahmad, M.U., et al., Prevalence of clinical mastitis in bovines in different climatic conditions in KPK, (Pakistan), Sci. Int., 2015, vol. 27, no. 3, pp. 2289–2293.

    Google Scholar 

  46. Klaas, I.C. and Zadoks, R.N., An update on environmental mastitis: Challenging perceptions, Transboundary Emerging Dis., 2018, vol. 65, pp. 166–185.

    Article  Google Scholar 

  47. Kuipers, A., Koops, W.J., and Wemmenhove, H., Antibiotic use in dairy herds in the Netherlands from 2005 to 2012, J. Dairy Sci., 2016, vol. 99, no. 2, pp. 1632–1648.

    Article  CAS  PubMed  Google Scholar 

  48. Lakew, B.T., Fayera, T., and Ali, Y.M., Risk factors for bovine mastitis with the isolation and identification of Streptococcus agalactiae from farms in and around Haramaya district, eastern Ethiopia, Trop. Anim. Health Prod., 2019, vol. 51, no. 6, pp. 1507–1513.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Love, M.J., Bhandari, D., Dobson, R.C., and Billington, C., Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care, Antibiotics, 2018, vol. 7, no. 1, p. 17.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Łusiak-Szelachowska, M., Weber-Dabrowska, B., and Gorski, A., Bacteriophages and lysins in biofilm control, Virol. Sin., 2020, vol. 35, no. 2, pp. 125–133.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Martinez, G., Harel, J., Higgins, R., et al., Characterization of Streptococcus agalactiae isolates of bovine and human origin by randomly amplified polymorphic DNA analysis, J. Clin. Microbiol., 2000, vol. 38, no. 1, pp. 71–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miles, A.M. and Huson, H.J., Graduate student literature review: Understanding the genetic mechanisms underlying mastitis, J. Dairy Sci., 2021, vol. 104, no. 1, pp. 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  53. Mohammad, G., Hamid, E., Mehrdad, G., et al., Prevalence assessment of Staphylococcus aureus and Streptococcus agalactiae by multiplex polymerase chain reaction (M-PCR) in bovine sub-clinical mastitis and their effect on somatic cell count (SCC) in Iranian dairy cows, Afr. J. Microbiol. Res., 2012, vol. 6, no. 12, pp. 3005–3010.

    Google Scholar 

  54. Motaung, T.E., Petrovski, K.R., Petzer, I.M., et al., Importance of bovine mastitis in Africa, Anim. Health Res. Rev., 2017, vol. 18, no. 1, pp. 58–69.

    Article  PubMed  Google Scholar 

  55. Nagasawa, Y., Kiku, Y., Sugawara, K., et al., The bacterial load in milk is associated with clinical severity in cases of bovine coliform mastitis, J. Vet. Med. Sci., 2019, vol. 81, no. 1, pp. 107–112.

    Article  CAS  PubMed  Google Scholar 

  56. O’Neill, J., Tackling Drug-Resistant Infections Globally: Final Report and Recommendations, 2016. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf.

  57. Nilsson, A.S., Phage therapy—Constraints and possibilities, Upsala J. Med. Sci., 2014, vol. 119, no. 2, pp. 192–198.

    Article  PubMed  PubMed Central  Google Scholar 

  58. O’flaherty, S., Coffey, A., Meaney, W., et al., The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus, J. Bacteriol., 2005a, vol. 187, no. 20, pp. 7161–7164.

    Article  PubMed  PubMed Central  Google Scholar 

  59. O’flaherty, S., Ross, R.P., Flynn, J., et al., Isolation and characterization of two anti-staphylococcal bacteriophages specific for pathogenic Staphylococcus aureus associated with bovine infections, Lett. Appl. Microbiol., 2005b, vol. 41, no. 6, pp. 482–486.

    Article  PubMed  Google Scholar 

  60. Pillai, A.M., Sivasankarapillai, V.S., Rahdar, A., et al., Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity, J. Mol. Struct., 2020, vol. 1211, p. 128107.

    Article  CAS  Google Scholar 

  61. Piotrowska-Tomala, K.K., Bah, M.M., Jankowska, K., et al., Lipopolysaccharides, cytokines, and nitric oxide affect secretion of prostaglandins and leukotrienes by bovine mammary gland during experimentally induced mastitis in vivo and in vitro, Domest. Anim. Endocrinol., 2015, vol. 52, pp. 90–99.

    Article  CAS  PubMed  Google Scholar 

  62. Pokharel, S., Shrestha, P., and Adhikari, B., Antimicrobial use in food animals and human health: Time to implement 'One Health’ approach, Antimicrob. Resist. Infect. Control, 2020, vol. 9, no. 1, p. 181.

  63. Porter, J., Anderson, J., Carter, L., et al., In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis, J. Dairy Sci., 2016, vol. 99, no. 3, pp. 2053–2062.

    Article  CAS  PubMed  Google Scholar 

  64. Qolbaini, E.N., Khoeri, M.M., Salsabila, K., et al., Identification and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus-associated subclinical mastitis isolated from dairy cows in Bogor, Indonesia, Vet. World, 2021, vol. 14, no. 5, pp. 1180–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rojas, E.R., Billings, G., Odermatt, P.D., et al., The outer membrane is an essential load-bearing element in gram-negative bacteria, Nature, 2018, vol. 559, no. 7715, pp. 617–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rossi, R.S., Amarante, A.F., Correia, L.B.N., et al., Diagnostic accuracy of Somaticell, California Mastitis Test, and microbiological examination of composite milk to detect Streptococcus agalactiae intramammary infections, J. Dairy Sci., 2018, vol. 101, no. 11, pp. 10220–10229.

    Article  CAS  PubMed  Google Scholar 

  67. Rossi, B.F., Bonsaglia, E.C.R., Castilho, I.G., et al., Genotyping of long term persistent Staphylococcus aureus in bovine subclinical mastitis, Microb. Pathog., 2019, vol. 132, pp. 45–50.

    Article  CAS  PubMed  Google Scholar 

  68. Ruegg, P.L., A 100-year review: Mastitis detection, management, and prevention, J. Dairy Sci., 2017, vol. 100, no. 12, pp. 10381–10397.

    Article  CAS  PubMed  Google Scholar 

  69. Ruegg, P.L., What is success? A narrative review of research evaluating outcomes of antibiotics used for treatment of clinical mastitis, Front. Vet. Sci., 2021, vol. 8, no. 38, p. 639641.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Saidani, M., Messadi, L., Soudani, A., et al., Epidemiology, antimicrobial resistance, and extended-spectrum beta-lactamase-producing Enterobacteriaceae in clinical bovine mastitis in Tunisia, Microb. Drug. Resist., 2018, vol. 24, no. 8, pp. 1242–1248.

    Article  CAS  PubMed  Google Scholar 

  71. Samir, M.S., Glister, C., Mattar, D., et al., Follicular expression of pro-inflammatory cytokines tumour necrosis factor-α (TNFα), interleukin 6 (IL6) and their receptors in cattle: TNFα, IL6 and macrophages suppress thecal androgen production in vitro, Reproduction, 2017, vol. 154, no. 1, pp. 35–49.

    Article  CAS  PubMed  Google Scholar 

  72. Santos, G., Bottino, M.P., Santos, A.P.C., et al., Subclinical mastitis interferes with ovulation, oocyte and granulosa cell quality in dairy cows, Theriogenology, 2018, vol. 119, pp. 214–219.

    Article  CAS  PubMed  Google Scholar 

  73. Sarma, O. and Hussain, J., Bovine mastitis: An overview, Vigyan Varta, 2021, vol. 2, pp. 54–59.

    Google Scholar 

  74. Schmelcher, M., Powell, A.M., Camp, M.J., et al., Synergistic streptococcal phage λSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis, Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 20, pp. 8475–8486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Scholte, C.M., Nelson, D.C., Garcia, M., et al., Recombinant bacteriophage endolysin PlyC is nontoxic and does not alter blood neutrophil oxidative response in lactating dairy cows, J. Dairy Sci., 2018, vol. 101, no. 7, pp. 6419–6423.

    Article  CAS  PubMed  Google Scholar 

  76. Schukken, Y.H., Bennett, G.J., Zurakowski, M.J., et al., Randomized clinical trial to evaluate the efficacy of a 5-day ceftiofur hydrochloride intramammary treatment on nonsevere gram-negative clinical mastitis, J. Dairy Sci., 2011, vol. 94, no. 12, pp. 6203–6215.

    Article  CAS  PubMed  Google Scholar 

  77. Sharifi, S., Pakdel, A., Ebrahimie, E., et al., Prediction of key regulators and downstream targets of E. coli induced mastitis, J. Appl. Genet., 2019, vol. 60, no. 3, pp. 367–373.

    Article  PubMed  Google Scholar 

  78. Sharun, K., Dhama, K., Tiwari, R., et al., Advances in therapeutic and managemental approaches of bovine mastitis: A comprehensive review, Vet. Q., 2021, vol. 41, no. 1, pp. 107–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sherwin, V.E., Egan, S.A., Green, M.J., and Leigh, J.A., Survival of Streptococcus uberis on bedding substrates, Vet. J., 2021, vol. 276, p. 105731.

    Article  CAS  PubMed  Google Scholar 

  80. Skarbye, A.P., Krogh, M.A., Denwood, M., et al., Effect of enhanced hygiene on transmission of Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae in dairy herds with automatic milking systems, J. Dairy Sci., 2021, vol. 104, no. 6, pp. 7195–7209.

    Article  CAS  PubMed  Google Scholar 

  81. Smith, E.M., Willis, Z.N., Blakeley, M., et al., Bacterial species and their associations with acute and chronic mastitis in suckler ewes, J. Dairy Sci., 2015, vol. 98, no. 10, pp. 7025–7033.

    Article  CAS  PubMed  Google Scholar 

  82. Song, S., He, W., Yang, D., et al., Molecular epidemiology of Klebsiella pneumoniae from clinical bovine mastitis in northern Area of China, 2018–2019, Engineering, 2022, vol. 10, pp. 146–154.

    Article  Google Scholar 

  83. Sztachańska, M., Barański, W., Janowski, T., et al., Prevalence and etiological agents of subclinical mastitis at the end of lactation in nine dairy herds in North-East Poland, Pol. J. Vet. Sci., 2016, vol. 19, no. 1, pp. 119–124.

    Article  PubMed  Google Scholar 

  84. Tančin, V., Mikláš, Š. and Mačuhová, L., Possible physiological and environmental factors affecting milk production and udder health of dairy cows: A review, Slovak J. Anim. Sci., 2018, vol. 51, no. 1, pp. 32–40.

    Google Scholar 

  85. Tanji, Y., Tanaka, A., Tani, K., et al., IgG-dependent aggregation of Staphylococcus aureus inhibits bacteriophage attack, Biochem. Eng. J., 2015, vol. 97, pp. 17–24.

    Article  CAS  Google Scholar 

  86. Tijs, S.H.W., Holstege, M.M.C., Scherpenzeel, C.G.M., et al., Effect of selective dry cow treatment on udder health and antimicrobial usage on Dutch dairy farms, J. Dairy Sci., 2022, vol. 105, no. 6, pp. 5381–5392.

    Article  CAS  PubMed  Google Scholar 

  87. Turk, R., Rošić, N., Kuleš, J., Horvatić, A., et al., Milk and serum proteomes in subclinical and clinical mastitis in Simmental cows, J. Proteomics, 2021, vol. 244, p. 104277.

    Article  CAS  PubMed  Google Scholar 

  88. Tvarožková, K., Tančin, V., Holko, I., et al., Mastitis in ewes: Somatic cell counts, pathogens and antibiotic resistance, J. Microbiol. Biotechnol. Food. Sci., 2021, pp. 661–670.

  89. Vailati-Riboni, M., Coleman, D.N., Lopreiato, V., et al., Feeding a Saccharomyces cerevisiae fermentation product improves udder health and immune response to a Streptococcus uberis mastitis challenge in mid-lactation dairy cows, J. Anim. Sci. Biotechnol., 2021, vol. 12, no. 1, p. 62.

  90. Vander Elst, N., Linden, S.B., Lavigne, R., et al., Characterization of the bacteriophage-derived endolysins plyss2 and plyss9 with in vitro lytic activity against bovine mastitis Streptococcus uberis, Antibiotics, 2020, vol. 9, no. 9, p. 621.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Vrieling, M., Boerhout, E.M., Van Wigcheren, G.F., et al., LukMF’ is the major secreted leukocidin of bovine Staphylococcus aureus and is produced in vivo during bovine mastitis, Sci. Rep., 2016, vol. 6, p. 37759.

  92. Wente, N. and Krömker, V., Streptococcus dysgalactiae— contagious or environmental?, Animals, 2020, vol. 10, no. 11, p. 2185.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wente, N., Klocke, D., Paduch, J.H., et al., Associations between Streptococcus uberis strains from the animal environment and clinical bovine mastitis cases, J. Dairy Sci., 2019, vol. 102, no. 10, pp. 9360–9369.

    Article  CAS  PubMed  Google Scholar 

  94. Wittebole, X., De Roock, S., and Opal, S.M., A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens, Virulence, 2014, vol. 5, no. 1, pp. 226–235.

    Article  PubMed  Google Scholar 

  95. Wu, J., Ding, Y., Wang, J., and Wang, F., Staphylococcus aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB transcription factors in bovine mammary epithelial cells, Microb. Pathog., 2018, vol. 117, pp. 276–284.

    Article  CAS  PubMed  Google Scholar 

  96. Yadav, M.M., Prevalence of Staphylococcus aureus in lactating cows with subclinical mastitis and their antibiogram in organized dairy farm, Maharashtra, India, Int. J. Curr. Microbiol. Appl. Sci., 2018, vol. 7, no. 3, pp. 3674–3680.

    Article  Google Scholar 

  97. Zaatout, N., An overview on mastitis-associated Escherichia coli: Pathogenicity, host immunity and the use of alternative therapies, Microbiol. Res., 2022, vol. 256, p. 126960.

    Article  CAS  PubMed  Google Scholar 

  98. Zaatout, N., Ayachi, A., and Kecha, M., Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities, J. Appl. Microbiol., 2020, vol. 129, no. 5, pp. 1102–1119.

    Article  CAS  PubMed  Google Scholar 

  99. Zadoks, R.N., Middleton, J.R., McDougall, S., et al., Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans Part 1-literature review, J. Mammary. Gland. Biol. Neoplasia, 2011, vol. 16, pp. 357–372.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zduńczyk, S. and Janowski, T., Bacteriophages and associated endolysins in therapy and prevention of mastitis and metritis in cows: Current knowledge, Anim. Reprod. Sci., 2020, vol. 218, p. 106504.

    Article  PubMed  Google Scholar 

  101. Zhao, W., Shi, Y., Liu, G., et al., Bacteriophage has beneficial effects in a murine model of Klebsiella pneumoniae mastitis, J. Dairy Sci., 2021, vol. 104, no. 3, pp. 3474–3484.

    Article  CAS  PubMed  Google Scholar 

  102. Zhao, X. and Lacasse, P., Mammary tissue damage during bovine mastitis: causes and control, J. Anim. Sci., 2008, vol. 86, no. 13, pp. 57–65.

    Article  CAS  PubMed  Google Scholar 

  103. Zhou, Y., Zhang, H., Bao, H., et al., The lytic activity of recombinant phage lysin LysKΔamidase against staphylococcal strains associated with bovine and human infections in the Jiangsu province of China, Res. Vet. Sci., 2017, vol. 11, pp. 113–119.

    Article  Google Scholar 

  104. Zigo, F., Elecko, J., Vasil, M., Ondrasovicova, S., et al., The occurrence of mastitis and its effect on the milk malondialdehyde concentrations and blood enzymatic antioxidants in dairy cows, Vet. Med., 2019, vol. 64, no. 10, pp. 423–432.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kanwar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwar, R., Aslam, M.A., Zulqurnain, H. et al. Bacteriophages and Their Endolysin: An Alternative Therapeutic Approach for Bovine Mastitis. Biol Bull Rev 13, 326–335 (2023). https://doi.org/10.1134/S2079086423040059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086423040059

Keywords:

Navigation