Skip to main content
Log in

Circular dichroism analysis of half-roll plasmonic chiral nanostructures

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Surface-plasmon-enhanced circular dichroism (CD) spectroscopy is a powerful analytical technique used for detecting chiral molecules, with great potential in biomedical diagnosis and pathogen detection. This work focuses on understanding the physical mechanisms of CD production and developing high-sensitivity CD detection substrates. Numerical simulation of the finite difference time domain (FDTD) method is utilized to design and study half-roll plasmonic nanostructures. The scattering spectra of the structure and the corresponding CD spectra show two resonance peaks, λ1 = 691 nm and λ2 = 903 nm, where the charge distribution of the upper surface and the lower surface shows a quadrupole distribution and a dipole distribution, and both of them are in antibonding mode. The structure’s sensitivity is demonstrated by varying the structure parameters and surrounding medium environment, which provides valuable insights for designing optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Mohammad, R.A., Mingfang, C., Sigrid, H.: Heterogeneity of the NIH3T3 fibroblast cell line. Cells 11(17), 2677(1)-2677(17) (2022)

    Google Scholar 

  2. Junli, P., et al.: Progress of molecular imprinting technique for enantioseparation of chiral drugs in recent ten years. J. Chromatogr. A 1668, 462914 (2022)

    Article  Google Scholar 

  3. Mandal, P., et al.: Broadband multi-resonant circular dichroism in metal-VO2 hybrid dagger-like plasmonic structure for switching application. Photon. Nanostruct. Fundam. Appl. 37, 100735 (2019)

    Article  Google Scholar 

  4. Changlong, H., et al.: Circularly polarized light-enabled chiral nanomaterials: from fabrication to application. Nano-Micro Lett. 15(1), 39 (2023)

    Article  Google Scholar 

  5. Fang, Y., et al.: Hot electron generation and cathodoluminescence nanoscopy of chiral split ring resonators. Nano Lett. 16(8), 5183–5190 (2016)

    Article  ADS  Google Scholar 

  6. Lv, J., et al.: Biomimetic chiral photonic crystals. Angew. Chem. Int. Ed. Engl. 58(23), 7783–7787 (2019)

    Article  Google Scholar 

  7. Cui, Y., et al.: Giant chiral optical response from a twisted-arc metamaterial. Nano Lett. 14(2), 1021–1025 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. Born, M., Wolf, E., Hecht, E.: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Phys. Today 53(10), 77–78 (2000)

    Article  Google Scholar 

  9. Bao, Y., et al.: Enhanced optical performance of multifocal metalens with conic shapes. Light Sci. Appl. 6(10), e17071 (2017)

    Article  Google Scholar 

  10. Wang, Z., et al.: A novel chiral metasurface with controllable circular dichroism induced by coupling localized and propagating modes. Adv. Opt. Mater. 4(6), 883–888 (2016)

    Article  ADS  Google Scholar 

  11. Mu, X., et al.: Chiral surface plasmon-enhanced chiral spectroscopy: principles and applications. Nanoscale 13(2), 581–601 (2021)

    Article  Google Scholar 

  12. Jiayu, Z., et al.: Paper-folding-based terahertz anti-resonant cavity. Opt. Lett. 48(3), 704–707 (2023)

    Article  Google Scholar 

  13. Younghwan, Y., et al.: Gap-plasmon-driven spin angular momentum selection of chiral metasurfaces for intensity-tunable metaholography working at visible frequencies. Nanophotonics 11(17), 4123–4133 (2022)

    Article  Google Scholar 

  14. Chiyu, Y., et al.: Mid-infrared broadband circular polarizer based on Weyl semimetals. Opt. Express 30(2), 3035–3046 (2022)

    Article  ADS  Google Scholar 

  15. Nguyen, V.A., Huy, B.N., Le, V.D.: Negative refractive index in a Doppler broadened three-level Λ-type atomic medium. Phys. Scr. 97(2), 025503 (2022)

    Article  Google Scholar 

  16. Debanand, S.: Chiral magnetic effect in Weyl semimetals and negative refraction. Eur. Phys. J. B 95(1), 00274 (2022)

    Google Scholar 

  17. Jiarong, C., et al.: Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nat. Nanotechnol. 17(4), 408–416 (2022)

    Article  Google Scholar 

  18. Guillermo, S., et al.: Enhanced optical chirality with directional emission of surface plasmon polaritons for chiral sensing applications. J. Quant. Spectrosc. Radiative Transfer 284, 108166–108173 (2022)

    Article  Google Scholar 

  19. Hu, L., et al.: Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality. Sci. Rep. 5, 16069–16078 (2015)

    Article  ADS  Google Scholar 

  20. Okamoto, H.: Local optical activity of nano- to microscale materials and plasmons. J. Mater. Chem. C 7(47), 14771–14787 (2019)

    Article  Google Scholar 

  21. Lee, H.E., et al.: Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556(7701), 360–365 (2018)

    Article  ADS  Google Scholar 

  22. Gilroy, C., et al.: Roles of superchirality and interference in chiral plasmonic biodetection. J. Phys. Chem. C 123(24), 15195–15203 (2019)

    Article  Google Scholar 

  23. Narushima, T., Hashiyada, S., Okamoto, H.: Nanoscopic study on developing optical activity with increasing chirality for two-dimensional metal nanostructures. ACS Photon. 1(8), 732–738 (2014)

    Article  Google Scholar 

  24. Zhu, G., et al.: Multipole analysis of the extinction cross section and circular dichroism of chiral metamolecules with optical theorem. Adv. Opt. Mater. 11, 2202677–2202684 (2023)

    Article  Google Scholar 

  25. Ogier, R., et al.: Macroscopic layers of chiral plasmonic nanoparticle oligomers from colloidal lithography. ACS Photon. 1(10), 1074–1081 (2014)

    Article  Google Scholar 

  26. Guo, Y., et al.: Orbital angular momentum dichroism caused by the interaction of electric and magnetic dipole moments and the geometrical asymmetry of chiral metal nanoparticles. Phys. Rev. A 102(3), 033525 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of this work from the National Natural Science Foundation of China (NSFC) (12074054, 12274054) and the Fundamental Research Funds for the Central Universities (DUT21LK06).

Author information

Authors and Affiliations

Authors

Contributions

Y.F. supervised this work. W.B. did numerical simulation and analyzed the data. W.B. wrote the manuscript. All of the authors revised the paper.

Corresponding author

Correspondence to Yurui Fang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, W., Ma, F. & Fang, Y. Circular dichroism analysis of half-roll plasmonic chiral nanostructures. Opt Rev 30, 526–530 (2023). https://doi.org/10.1007/s10043-023-00832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00832-w

Keywords

Navigation