Skip to main content

Advertisement

Log in

Mineral-scale insights into the petrogenesis of the 3.30 Ga rhyolite in the Contendas-Mirante region, northern São Francisco Craton, Brazil: implications from results of plagioclase and biotite analyses

  • Research
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The 3.30 Ga high-silica volcanic system of the Gavião Block, São Francisco Craton, represents the remnants of within-plate magmatism related to an intracontinental rift. However, the petrogenetic processes that may have taken place in the relatively shallow primitive continental crust has not been fully constrained due to a scarce record. Petrographic and chemical analyses in biotite, as well as in-situ Sr isotope ratios in plagioclase, were used to trace petrogenetic processes and physicochemical conditions of the magmatic system. The subvolcanic rock has a well-preserved primary volcanic feature represented by magma flow textures, euhedral to subhedral plagioclases, rapakivi microstructures, and glomerocrysts. Plagioclase populations formed at two distinct stages recorded by trace elements and Sr isotope. Plagioclase phenocrysts and rapakivi phenocrysts have a slight enrichment of light rare earth elements (LREE), Sr/Ba ratio, and slight variation of Sr isotopes composition. Meanwhile, other phenocrysts and rapakivi crystals have low LREE, Sr/Ba, and a limited variation of Sr isotope ratio. Mineral chemistry evidence points to country rock assimilation during plagioclase formation and a crustal source for primary biotites under oxidized conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel-Rahman, Abdel Fattah M (1994) Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J Petrol 35:525–541

    Article  ADS  Google Scholar 

  • Agangi A, Hofmann A, Elburg MA (2018) A review of Palaeoarchaean felsic volcanism in the eastern Kaapvaal craton: linking plutonic and volcanic records. Geosci Front 9:667–688

    Article  CAS  Google Scholar 

  • Amaral CAD (2021) Paleomagnetic study of Bahia Archean rocks. Universidade de São Paulo

  • Barbosa JSF, Sabaté P (2004) Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: geodynamic features. Precambrian Res 133:1–27

    Article  ADS  CAS  Google Scholar 

  • Barbosa JSF, Sabaté P, Marinho MM (2003) O cráton do São Francisco na Bahia: uma síntese. Rev Bras Geociências 33:3–6

    Article  Google Scholar 

  • Champion DC, Smithies RH (2007) Geochemistry of Paleoarchean Granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: implications for early Archean Crustal Growth. Dev Precambrian Geol 15:369–409

    Article  Google Scholar 

  • Chen WT, Zhou MF, Gao JF, Zhao TP (2015) Oscillatory Sr isotopic signature in plagioclase megacrysts from the Damiao anorthosite complex, North China: implication for petrogenesis of massif-type anorthosite. Chem Geol 393–394:1–15

    Article  ADS  Google Scholar 

  • Condie KC (2019) Earth’s Oldest Rocks and Minerals. Earth’s Oldest Rocks. Elsevier B.V., pp 239–253

  • Deer WA, Howie RA, Zussman J (1962) Rock-forming minerals: sheet silicates, 3rd edn. Wiley

  • dos Santos C, Zincone SA, Queiroga GN et al (2022) Evidence for change in crust formation process during the Paleoarchean in the São Francisco Craton (Gavião Block): coupled zircon Lu-Hf and U-Pb isotopic analyses and tectonic implications. Precambrian Res 368:106472

    Article  Google Scholar 

  • Drake MJ (1975) Partition of Sr, Ba, ca, Eu2+ Y, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochim Cosmochim Acta 39:689–712

    Article  ADS  CAS  Google Scholar 

  • Foster MD (1960) Interpretation of the composition of trioctahedral micas. USGS Prof Pap 354:11–48

    Google Scholar 

  • Gao JF, Zhou MF, Robinson PT et al (2015) Magma mixing recorded by Sr isotopes of plagioclase from dacites of the Quaternary Tengchong volcanic field, SE Tibetan Plateau. J Asian Earth Sci 98:1–17

    Article  ADS  Google Scholar 

  • Gordilho Barbosa R, Ferreira A, Leitzke FP et al (2022) A review of 3.66 to 2.77 Ga crustal differentiation in the northern São Francisco Craton, Brazil. Int Geol Rev 00:1–17

    Google Scholar 

  • Griffin WJ, Powell J, Pearson NJ, O’Reilly SY (2008) Glitter: data reduction software for laser ablation ICP-MS. In: Sylvester P (ed) Laser ablation ICP-MS in the Earth Sciences: current Practices and Outstanding Issues, Mineralogi. Agilent Technologies, Vancouver, pp 308–311

    Google Scholar 

  • Huston DL, Morant P, Pirajno F et al (2007) Paleoarchean mineral deposits of the Pilbara Craton: Genesis, tectonic environment and comparisons with younger deposits. In: Earth’s Oldest Rocks. pp 411–450

  • Kemp AIS, Hawkesworth CJ, Foster GL et al (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science (80-) 315:980–983

    Article  ADS  CAS  Google Scholar 

  • Kröner A, Elis Hoffmann J, Xie H et al (2013) Generation of early Archaean felsic greenstone volcanic rocks through crustal melting in the Kaapvaal, craton, southern Africa. Earth Planet Sci Lett 381:188–197

    Article  ADS  Google Scholar 

  • Laurent O, Martin H, Moyen JF, Doucelance R (2014) The diversity and evolution of late-archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos 205:208–235

    Article  ADS  CAS  Google Scholar 

  • Li X, Zhang C, Behrens H, Holtz F (2020) Corrigendum to “Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos 362–363. https://doi.org/10.1016/j.lithos.2020.105506

  • Marinho MM, Sabate P, Barbosa JSF (1993a) The Contendas-Mirante volcano-sedimentary belt. Bol IG-USP Publicação Espec 15:37–72

    Google Scholar 

  • Marinho MM, Vidal P, Alibert C et al (1993b) Geochronology of the Jequié-Itabuna granulitic belt and of the Contendas-Mirante volcano-sedimentary belt. Bol IG-USP Publicação Espec 15:73–96

    Google Scholar 

  • Martin H, Peucat JJ, Sabaté P, Cunha JC (1997) Crustal evolution in the early Archaean of South America: example of the Sete Voltas Massif, Bahia State, Brazil. Precambrian Res 82:35–62

    Article  ADS  CAS  Google Scholar 

  • Martin H, Smithies RH, Rapp R et al (2005) An overview of adakite, tonalite-trondhjemiten-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  ADS  CAS  Google Scholar 

  • Mascarenhas JF, Ledru P, De Souza SL et al (1998) Geologia e recursos minerais do Grupo Jacobina e da parte sul do Greenstone Belt de Mundo Novo. Série Arq Abertos 13:58

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  ADS  CAS  Google Scholar 

  • Nachit H, Ibhi A, Abia EH, Ben Ohoud M (2005) Discrimation between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus - Geosci 337:1415–1420

    Article  ADS  CAS  Google Scholar 

  • Nutman AP, Cordani UG (1993) SHRIMP U-Pb zircon geochronology of archaean granitoids from the Contendas-Mirante area of the São Francisco Craton, Bahia, Brazil. Precambrian Res 63:179–188

    Article  ADS  CAS  Google Scholar 

  • Oliveira EP, McNaughton NJ, Zincone SA, Talavera C (2020) Birthplace of the São Francisco Craton, Brazil: evidence from 3.60 to 3.64 Ga gneisses of the Mairi Gneiss Complex. Terra Nov 281–289. https://doi.org/10.1111/ter.12460

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  CAS  Google Scholar 

  • Reimink JR, Chacko T, Stern RA, Heaman LM (2014) Earth’s earliest evolved crust generated in an Iceland-like setting. Nat Geosci 7:529–533

    Article  ADS  CAS  Google Scholar 

  • Rusiecka MK, Martel C (2022) Nucleation delay in water-saturated rhyolite during decompression in shallow volcanic systems and its implications for ascent dynamics. Bull Volcanol 84:61

    Article  ADS  Google Scholar 

  • Sabaté P, Marinho MM, Vidal P, Caen-Vachette M (1990) The 2-Ga peraluminous magmatism of the Jacobina-Contendas Mirante belts (Bahia, Brazil): geologic and isotopic constraints on the sources. Chem Geol 83:325–338

    Article  ADS  Google Scholar 

  • Santos-Pinto M, Peucat J, Martin H et al (2012) Crustal evolution between 2.0 and 3.5 Ga in the southern Gavião block (Umburanas-Brumado-Aracatu region), São Francisco Craton, Brazil: a 3.5 e 3.8 Ga proto-crust in the Gavião block ? J South Am Sci 40:129–142

    CAS  Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ (2019) The oldest well-preserved felsic volcanic rocks on Earth: geochemical clues to the early evolution of the Pilbara Supergroup and implicationss for the growth of a Paleoarchean protocontinent. Earth’s Oldest Rocks. Government of Western Australia and Elsevier, pp 463–486.

  • Teixeira W, Oliveira EP, Marques LS (2017) Nature and evolution of the Archean crust of the São Francisco Craton. In: Heibron M, Cordani UG, Alkimim FF (eds) The São Francisco Craton and its margins. Springer, pp 29–56

    Google Scholar 

  • Teles G, Chemale F, de Oliveira CG (2015) Paleoarchean record of the detrital pyrite-bearing, Jacobina Au-U deposits, Bahia, Brazil. Precambrian Res 256:289–313

    Article  ADS  CAS  Google Scholar 

  • Tepley FJ, Davidson JP (2003) Mineral-scale Sr-isotope constraints on magma evolution and chamber dynamics in the rum layered intrusion, Scotland. Contrib to Mineral Petrol 145:628–641

    Article  ADS  CAS  Google Scholar 

  • Turner JS, Campbell IH (1986) Convection and mixing in magma chambers. Earth Sci Rev 23:255–352

    Article  ADS  CAS  Google Scholar 

  • Vance JA (1965) Zoning in Igneous Plagioclase: patchy zoning. J Geol 73:636–651

    Article  ADS  Google Scholar 

  • Vance JA (1969) On synneusis. Contrib to Mineral Petrol 24:7–29

    Article  ADS  Google Scholar 

  • Vogt JHL (1921) The physical chemistry of the crystallization and magmatic differentiation of igneous rocks. J Geol 29:318–350

    Article  ADS  CAS  Google Scholar 

  • Weill DF (1973) Europium anomaly in plagioclase feldspar: experimental results and semiquantitative model. Science (80-) 180:1059–1060

    Article  ADS  CAS  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  ADS  CAS  Google Scholar 

  • Wilson SA (1997) Data compilation for USGS reference material BHVO-2, Hawaiian Basalt. US geological survey open-file report

    Google Scholar 

  • Wolff JA, Ellis BS, Ramos FC (2011) Strontium isotopes and magma dynamics: insights from high temperature rhyolites. Geology 39:931–934

    Article  ADS  CAS  Google Scholar 

  • Wones DR, Eguster HP (1965) Stability of biotite: experiment, theory, and application. Am Mineral 50:1228–1272

    CAS  Google Scholar 

  • Yang YH, Wu FY, Xie LW et al (2011) High-precision direct determination of the 87Sr/86Sr isotope ratio of bottled Sr-rich natural mineral drinking water using multiple collector inductively coupled plasma mass spectrometry. Spectrochim Acta - Part B At Spectrosc 66:656–660

    Article  ADS  CAS  Google Scholar 

  • Zhou ZX (1986) The origin of intrusive mass in Fengshandong. Acta Petrol Sin 2:59–70

    Google Scholar 

  • Zincone SA, Oliveira EP (2017) Field and geochronological evidence for origin of the Contendas-Mirante supracrustal Belt, São Francisco Craton, Brazil, as a paleoproterozoic foreland basin. Precambrian Res 299:117–131

    Article  ADS  CAS  Google Scholar 

  • Zincone SA, Oliveira EP, Laurent O et al (2016) 3.30 Ga high-silica intraplate volcanic–plutonic system of the Gavião Block, São Francisco Craton, Brazil: evidence of an intracontinental rift following the creation of insulating continental crust. Lithos 266–267:414–434

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author E.M.B.F wishes to thank the Fundação de Amparo à Pesquisa do Estado de Minas Gerais and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for providing a scholarship. We gratefully appreciate the assistance of the Microscopy and Microanalysis Laboratory, and the Isotopic Geochemistry Laboratory of Federal University of Ouro Preto, Minas Gerais State, Brazil. We are also grateful to three anonymous reviewers and the handling Editor Chao Wang for their thoughtful and constructive comments and suggestions that improved the quality of the manuscript.

Funding

Author E.M.B.F was funded by Fundação de Amparo à Pesquisa do Estado de Minas Gerais and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. S. A. Z. received financial support from Ministério da Ciência, Tecnologia e Inovação and Conselho de Desenvolvimento Científico e Tecnológico (436648/2018), Fundação de Apoio a Pesquisa do Distrito Federal (193.001.263/2017), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior and Conselho de Desenvolvimento Científico e Tecnológico (465613/2014-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana M. Branches Farias.

Additional information

Editorial handling: C. Wang

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branches Farias, E.M., Lana, C.C., Zincone, S.A. et al. Mineral-scale insights into the petrogenesis of the 3.30 Ga rhyolite in the Contendas-Mirante region, northern São Francisco Craton, Brazil: implications from results of plagioclase and biotite analyses. Miner Petrol 118, 41–54 (2024). https://doi.org/10.1007/s00710-023-00842-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-023-00842-1

Keywords

Navigation