Skip to main content
Log in

Genetic Association of Circulating Adipokines with Risk of Idiopathic Pulmonary Fibrosis: A Two-Sample Mendelian Randomization Study

  • IDIOPATHIC PULMONARY FIBROSIS
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

The causal relationships between circulating adipokines and idiopathic pulmonary fibrosis (IPF) are yet to be established. We performed a two-sample Mendelian randomization (MR) study to investigate the causal roles of adipokines on IPF risk.

Methods

We analyzed the summary data from genome-wide association studies (GWAS), including adiponectin, leptin, resistin and monocyte chemoattractant protein-1 (MCP-1) and IPF. The inverse-variance weighted (IVW) method was considered as the major method and the MR-Egger, weighted median, simple mode and weighted mode were utilized as complementary methods. We also performed the sensitivity analyses, including heterogeneity test, horizontal pleiotropy test and leave-one-out analysis.

Results

The selected number of single nucleotide polymorphisms (SNPs) was 13 for adiponectin, 6 for leptin,12 for resistin, and 6 for MCP-1, respectively. The results showed a causal effect of the circulating adiponectin levels on the risk of IPF (OR 0.645, 95% CI 0.457–0.911, P = 0.013). However, we did not observe significant associations of genetic changes in serum leptin (OR 1.018, 95% CI 0.442–2.346, P = 0.967), resistin (OR 1.002, 95% CI 0.712–1.408, P = 0.993), and MCP-1 (OR 1.358, 95% CI 0.891–2.068, P = 0.155) with risk of developing IPF. There was no evidence of heterogeneity or horizontal pleiotropy. The sensitivity analyses confirmed that our results were stable and reliable.

Conclusions

The increase in serum adiponectin was associated causally with a decreased risk of developing IPF. There is no evidence to support a causal association between leptin, resistin or MCP-1 with risk of IPF. Further studies are needed to confirm our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Publicly available datasets were analyzed in this study. All GWAS data used in this study are available in the IEU open GWAS project (https://gwas.mrcieu.ac.uk/). All data generated or analyzed during this study are included in this published article.

Abbreviations

IPF:

Idiopathic pulmonary fibrosis

MR:

Mendelian randomization

GWAS:

Genome-wide association studies

MCP-1:

Monocyte chemoattractant protein-1

IVW:

Inverse-variance weighted

MR-PRESSO:

MR pleiotropy residual sum and outlier

SNP:

Single nucleotide polymorphism

OR:

Odds ratio

95%CI:

95% Confidence interval

EMT:

Epithelial-mesenchymal transition

BMI:

Body mass index

IV:

Instrumental variable

References

  1. Richeldi L, Collard HR, Jones MG (2017) Idiopathic pulmonary fibrosis. Lancet 389(10082):1941–1952. https://doi.org/10.1016/S0140-6736(17)30866-8

    Article  PubMed  Google Scholar 

  2. Martinez FJ, Collard HR, Pardo A et al (2017) Idiopathic pulmonary fibrosis. Nat Rev Dis Primers 3:17074. https://doi.org/10.1038/nrdp.2017.74

    Article  PubMed  Google Scholar 

  3. Lederer DJ, Martinez FJ (2018) Idiopathic pulmonary fibrosis. N Engl J Med 378(19):1811–1823. https://doi.org/10.1056/NEJMra1705751

    Article  CAS  PubMed  Google Scholar 

  4. Fasshauer M, Blüher M (2015) Adipokines in health and disease. Trends Pharmacol Sci 36(7):461–470. https://doi.org/10.1016/j.tips.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  5. Jain M, Budinger GR, Lo A et al (2011) Leptin promotes fibroproliferative acute respiratory distress syndrome by inhibiting peroxisome proliferator-activated receptor-γ. Am J Respir Crit Care Med 183(11):1490–1498. https://doi.org/10.1164/rccm.201009-1409OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. d’Alessandro M, Bergantini L, Refini RM et al (2020) Adiponectin and leptin levels in idiopathic pulmonary fibrosis: a new method for BAL and serum assessment. Immunobiology 225(5):151997. https://doi.org/10.1016/j.imbio.2020.151997

    Article  CAS  PubMed  Google Scholar 

  7. Cao M, Swigris JJ, Wang X et al (2016) Plasma Leptin is elevated in acute exacerbation of idiopathic pulmonary fibrosis. Mediators Inflamm 2016:6940480. https://doi.org/10.1155/2016/6940480

    Article  PubMed  PubMed Central  Google Scholar 

  8. Enomoto N, Oyama Y, Yasui H et al (2019) Analysis of serum adiponectin and leptin in patients with acute exacerbation of idiopathic pulmonary fibrosis. Sci Rep 9(1):10484. https://doi.org/10.1038/s41598-019-46990-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Emdin CA, Khera AV, Kathiresan S (2017) Mendelian randomization. JAMA 318(19):1925–1926. https://doi.org/10.1001/jama.2017.17219

    Article  PubMed  Google Scholar 

  10. Boehm FJ, Zhou X (2022) Statistical methods for Mendelian randomization in genome-wide association studies: a review. Comput Struct Biotechnol J 20:2338–2351. https://doi.org/10.1016/j.csbj.2022.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Skrivankova VW, Richmond RC, Woolf BAR et al (2021) Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement. JAMA 326(16):1614–1621. https://doi.org/10.1001/jama.2021.18236

    Article  PubMed  Google Scholar 

  12. Dastani Z, Hivert MF, Timpson N et al (2012) Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet 8(3):e1002607. https://doi.org/10.1371/journal.pgen.1002607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yaghootkar H, Zhang Y, Spracklen CN et al (2020) Genetic studies of leptin concentrations implicate leptin in the regulation of early adiposity. Diabetes 69(12):2806–2818. https://doi.org/10.2337/db20-0070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Folkersen L, Gustafsson S, Wang Q et al (2020) Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab 2(10):1135–1148. https://doi.org/10.1038/s42255-020-00287-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dhindsa RS, Mattsson J, Nag A et al (2021) Identification of a missense variant in SPDL1 associated with idiopathic pulmonary fibrosis. Commun Biol 4(1):392. https://doi.org/10.1038/s42003-021-01910-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133–1163. https://doi.org/10.1002/sim.3034

    Article  PubMed  Google Scholar 

  17. Burgess S, Thompson SG, CRP CHD genetics collaboration (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40(3):755–764. https://doi.org/10.1093/ije/dyr036

    Article  PubMed  Google Scholar 

  18. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525. https://doi.org/10.1093/ije/dyv080

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314. https://doi.org/10.1002/gepi.21965

    Article  PubMed  PubMed Central  Google Scholar 

  20. Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–698. https://doi.org/10.1038/s41588-018-0099-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma Y, Feng C, Tang H et al (2022) Management of BMI Is a potential new approach for the prevention of idiopathic pulmonary fibrosis. Front Genet 13:821029. https://doi.org/10.3389/fgene.2022.821029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiao W, Li J, Feng T, Jin L (2023) Circulating adipokine concentrations and the risk of venous thromboembolism: a Mendelian randomization and mediation analysis. Front Genet 14:1113111. https://doi.org/10.3389/fgene.2023.1113111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo X, Sunil C, Qian G (2022) Obesity and the development of lung fibrosis. Front Pharmacol 12:812166. https://doi.org/10.3389/fphar.2021.812166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heukels P, Moor CC, von der Thüsen JH, Wijsenbeek MS, Kool M (2019) Inflammation and immunity in IPF pathogenesis and treatment. Respir Med 147:79–91. https://doi.org/10.1016/j.rmed.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  25. Nie YJ, Wu SH, Xuan YH, Yan G (2022) Role of IL-17 family cytokines in the progression of IPF from inflammation to fibrosis. Mil Med Res 9(1):21. https://doi.org/10.1186/s40779-022-00382-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fang H, Judd RL (2018) Adiponectin regulation and function. Compr Physiol 8(3):1031–1063. https://doi.org/10.1002/cphy.c170046

    Article  PubMed  Google Scholar 

  27. Yao R, Cao Y, He YR, Lau WB, Zeng Z, Liang ZA (2015) Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat. PloS One 10(5):e0125169. https://doi.org/10.1371/journal.pone.0125169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu W, Zhang G, Qiu L, Liu X, Zhou S, Wu J (2022) Contribution of Adiponectin/Carnitine Palmityl Transferase 1A-mediated fatty acid metabolism during the development of idiopathic pulmonary fibrosis. Oxid Med Cell Longev 2022:5265616. https://doi.org/10.1155/2022/5265616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang X, Yang J, Wu L et al (2022) Adiponectin inhibits the activation of lung fibroblasts and pulmonary fibrosis by regulating the nuclear factor kappa B (NF-κB) pathway. Bioengineered 13(4):10098–10110. https://doi.org/10.1080/21655979.2022.2063652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jing H, Tang S, Lin S et al (2020) Adiponectin in renal fibrosis. Aging (Albany NY) 12(5):4660–4672. https://doi.org/10.18632/aging.102811

    Article  CAS  PubMed  Google Scholar 

  31. Xie M, Xiong Z, Yin S et al (2022) Adiponectin alleviates intestinal fibrosis by enhancing AMP-activated protein kinase phosphorylation. Dig Dis Sci 67(6):2232–2243. https://doi.org/10.1007/s10620-021-07015-0

    Article  CAS  PubMed  Google Scholar 

  32. Perakakis N, Farr OM, Mantzoros CS (2021) Leptin in leanness and obesity: JACC state-of-the-art review. J Am Coll Cardiol 77(6):745–760. https://doi.org/10.1016/j.jacc.2020.11.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gui X, Chen H, Cai H, Sun L, Gu L (2018) Leptin promotes pulmonary fibrosis development by inhibiting autophagy via PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun 498(3):660–666. https://doi.org/10.1016/j.bbrc.2018.03.039

    Article  CAS  PubMed  Google Scholar 

  34. Acquarone E, Monacelli F, Borghi R, Nencioni A, Odetti P (2019) Resistin: a reappraisal. Mech Ageing Dev 178:46–63. https://doi.org/10.1016/j.mad.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  35. Lin Q, Johns RA (2020) Resistin family proteins in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 319(3):L422–L434. https://doi.org/10.1152/ajplung.00040.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh S, Anshita D, Ravichandiran V (2021) MCP-1: function, regulation, and involvement in disease. Int Immunopharmacol 101(Pt B):107598. https://doi.org/10.1016/j.intimp.2021.107598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Inoshima I, Kuwano K, Hamada N et al (2004) Anti-monocyte chemoattractant protein-1 gene therapy attenuates pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol 286(5):L1038–L1044. https://doi.org/10.1152/ajplung.00167.2003

    Article  CAS  PubMed  Google Scholar 

  38. Pulito-Cueto V, Remuzgo-Martínez S, Genre F et al (2022) Elevated VCAM-1, MCP-1 and ADMA serum levels related to pulmonary fibrosis of interstitial lung disease associated with rheumatoid arthritis. Front Mol Biosci 9:1056121. https://doi.org/10.3389/fmolb.2022.1056121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grinde KE, Arbet J, Green A et al (2017) Illustrating, quantifying, and correcting for bias in post-hoc analysis of gene-based rare variant tests of association. Front Genet. 8:117. https://doi.org/10.3389/fgene.2017.00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fan J, Zhu J, Sun L, Li Y, Wang T, Li Y (2021) Causal association of adipokines with osteoarthritis: a Mendelian randomization study. Rheumatology (Oxford) 60(6):2808–2815. https://doi.org/10.1093/rheumatology/keaa719

    Article  CAS  PubMed  Google Scholar 

  41. Kulkarni T, Yuan K, Tran-Nguyen TK et al (2019) Decrements of body mass index are associated with poor outcomes of idiopathic pulmonary fibrosis patients. PloS one 14(10):e0221905. https://doi.org/10.1371/journal.pone.0221905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all investigators and participants from the open GWAS summary datasets. Special thanks to the IEU open GWAS project developed by the MRC Integrative Epidemiology Unit (IEU) at the University of Bristol. Thank them for extracting relevant GWAS summary-level data from published articles, UK Biobank, and FinnGen biobank.

Funding

This work was supported by the Science and Technology Department of Sichuan Province (2023NSFSC1459, 2022NSFSC1313), the West China Hospital of Sichuan University Postdoctoral Science Foundation (2023HXBH043).

Author information

Authors and Affiliations

Authors

Contributions

DH and LG gave the study concept and design; all authors acquired, analyzed, and interpreted the data, and critically revised the manuscript for important intellectual content; DH drafted the manuscript; DH carried out the statistical analysis; YS and ZL supervised the study; All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yujun Shi or Zongan Liang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical Approval

The present study relied only on publicly available de-identified summary statistics from relevant published GWASs. The ethical approval and informed consent were obtained in all original studies. Additional ethical approval was not required for our study.

Consent for Publication

Consent for publication was provided by all authors.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (CSV 3 KB)

Supplementary file2 (DOCX 4733 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Gong, L., Wu, Z. et al. Genetic Association of Circulating Adipokines with Risk of Idiopathic Pulmonary Fibrosis: A Two-Sample Mendelian Randomization Study. Lung 201, 355–362 (2023). https://doi.org/10.1007/s00408-023-00640-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-023-00640-8

Keywords

Navigation