Skip to main content
Log in

Rapid electrical impedance detection of sickle cell vaso-occlusion in microfluidic device

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Sickle cell disease is characterized by painful vaso-occlusive crises, in which poorly deformable sickle cells play an important role in the complex vascular obstruction process. Existing techniques are mainly based on optical microscopy and video processing of sickle blood flow under normoxic condition, for measuring vaso-occlusion by a small fraction of dense sickle cells of intrinsic rigidity but not the vaso-occlusion by the rigid, sickled cells due to deoxygenation. Thus, these techniques are not suitable for rapid, point-of-care testing. Here, we integrate electrical impedance sensing and Polydimethylsiloxane-microvascular mimics with controlled oxygen level into a single microfluidic chip, for quantification of vaso-occlusion by rigid, sickled cells within 1 min. Electrical impedance measurements provided a label-free, real-time detection of different sickle cell flow behaviors, including steady flow, vaso-occlusion, and flow recovery in response to the deoxygenation-reoxygenation process that are validated by microscopic videos. Sensitivity of the real part and imaginary part of the impedance signals to the blood flow conditions in both natural sickle cell blood and simulants at four electrical frequencies (10, 50, 100, and 500 kHz) are compared. The results show that the sensitivity of the sensor in detection of vaso-occlusion decreases as electrical frequency increases, while the higher frequencies are preferable in measurement of steady flow behavior. Additional testing using sickle cell simulants, chemically crosslinked normal red blood cells, shows same high sensitivity in detection of vaso-occlusion as sickle cell vaso-occlusion under deoxygenation. This work enables point-of-care testing potentials in rapid, accurate detection of steady flow and sickle cell vaso-occlusion from microliter volume blood specimens. Quantification of sickle cell rheology in response to hypoxia, may provide useful indications for not only the kinetics of cell sickling, but also the altered hemodynamics as obseved at the microcirculatory level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • P. Abbyad, P.-L. Tharaux, J.-L. Martin, C.N. Baroud, A. Alexandrou, Sickling of red blood cells through rapid oxygen exchange in microfluidic drops. Lab. Chip. 10(19), 2505–2512 (2010)

    Article  Google Scholar 

  • O. Abdulmalik, M.K. Safo, Q. Chen, J. Yang, C. Brugnara, K. Ohene-Frempong, D.J. Abraham, T. Asakura, 5-hydroxymethyl‐2‐furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. brit. J. Haemat. 128(4), 552–561 (2005)

    Article  Google Scholar 

  • K. Asami, Characterization of biological cells by dielectric spectroscopy. J. Non Cryst. Solids. 305(1–3), 268–277 (2002)

    Article  Google Scholar 

  • S. Charache, F.B. Barton, R.D. Moore, M.L. Terrin, M.H. Steinberg, G.J. Dover, S.K. Ballas, R.P. McMahon, O. Castro, E.P. Orringer, Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive “switching” agent. The Multicenter Study of Hydroxyurea in Sickle Cell Anemia. Medicine. 75(6), 300–326 (1996)

    Google Scholar 

  • T. Chen, R. Lathrop, S. Shevkoplyas, (2012). The case for rapid diagnosis of sickle cell disease: a literature review. J. Glob. Health Perspect. 2012: 1–7

  • C.L. Chuang, F. Demontis, Systemic manifestation and contribution of peripheral tissues to Huntington’s disease pathogenesis. Ageing Res. Rev. 69, 101358 (2021)

    Article  Google Scholar 

  • H. Daguerre, M. Solsona, J. Cottet, M. Gauthier, P. Renaud, A.J. Bolopion, (2020). Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: Origin, challenges and opportunities. Lab Chip 20(20): 3665–3689

  • S. Demirci, A. Leonard, J.J. Haro-Mora, N. Uchida, J.F. Tisdale, CRISPR/Cas9 for Sickle Cell Disease: applications, future possibilities, and Challenges. Cell Biology and Translational Medicine. K. Turksen. Cham. Springer Int. Publishing. 5, 37–52 (2019)

    Google Scholar 

  • D. Dieujuste, Y. Qiang, E. Du, A portable impedance microflow cytometer for measuring cellular response to hypoxia. Biotechnol. Bioeng. 118(10), 4041–4051 (2021)

    Article  Google Scholar 

  • E. Du, M. Diez-Silva, G.J. Kato, M. Dao, S. Suresh, (2015). Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis. Proc. Natl. Acad. Sci. U.S.A. 112(5): 1422–1427

  • Y. Feng, L. Huang, P. Zhao, F. Liang, W.J.A. Wang, (2019). A microfluidic device integrating impedance flow cytometry and electric impedance spectroscopy for high-efficiency single-cell electrical property measurement. Anal. Chem. 91(23): 15204–15212

  • R.B. Jr. Francis, C.S. Johnson, Vascular occlusion in sickle cell disease: current concepts and unanswered questions. Blood. 77(7), 1405–1414 (1991)

    Article  Google Scholar 

  • V.L. Gillis, A. Senthinathan, M. Dzingina, K. Chamberlain, E. Banks, M.R. Baker, D. Longson, G. Guideline, Development, Management of an acute painful sickle cell episode in hospital: summary of NICE guidance. brit. Med. J. 344, e4063 (2012)

    Google Scholar 

  • F. Gökçe, P.S. Ravaynia, M.M. Modena, A. Hierlemann, What is the future of electrical impedance spectroscopy in flow cytometry? Biomicrofluidics. 15(6), 061302 (2021)

    Google Scholar 

  • A. Hannemann, U.M. Cytlak, D.C. Rees, S. Tewari, J.S. Gibson, Effects of 5-hydroxymethyl‐2‐furfural on the volume and membrane permeability of red blood cells from patients with sickle cell disease. J. Physiol. 592(18), 4039–4049 (2014)

    Article  Google Scholar 

  • K.M. Harris, T.S. Haas, E.R. Eichner, B.J. Maron, Sickle cell trait associated with sudden death in competitive athletes. am. J. Card. 110(8), 1185–1188 (2012)

    Article  Google Scholar 

  • J. Higgins, D. Eddington, S. Bhatia, L. Mahadevan, (2007). Sickle cell vasoocclusion and rescue in a microfluidic device. Proc. Natl. Acad. Sci. U.S.A. 104(51): 20496–20500

  • F. Liu, S. Arifuzzaman, A.N. Nordin, D. Spray, I. Voiculescu, Characterization of Endothelial Cells Using Electrochemical Impedance Spectroscopy (2010 IEEE APCCAS, IEEE, 2010)

    Book  Google Scholar 

  • J. Liu, Y. Qiang, O. Alvarez, E. Du, Electrical impedance microflow cytometry with oxygen control for detection of sickle cells. sens. Actuators B Chem. 255, 2392–2398 (2018)

    Article  Google Scholar 

  • J. Liu, Y. Qiang, O. Alvarez, E. Du, Electrical impedance characterization of erythrocyte response to cyclic hypoxia in sickle cell disease. ACS Sens. 4(7), 1783–1790 (2019)

    Article  Google Scholar 

  • L.H. Mackie, R.M. Hochmuth, The influence of oxygen tension, temperature, and hemoglobin concentration on the rheologic properties of sickle erythrocytes. Blood. 76(6), 1256–1261 (1990)

    Article  Google Scholar 

  • Y. Man, D. Maji, R. An, S.P. Ahuja, J.A. Little, M.A. Suster, P. Mohseni, U.A. Gurkan, Microfluidic electrical impedance assessment of red blood cell-mediated microvascular occlusion. Lab. Chip. 21(6), 1036–1048 (2021)

    Article  Google Scholar 

  • Y. Niihara, S.T. Miller, J. Kanter, S. Lanzkron, W.R. Smith, L.L. Hsu, V.R. Gordeuk, K. Viswanathan, S. Sarnaik, I. Osunkwo, A phase 3 trial of l-glutamine in sickle cell disease. N Engl. J. Med. 379(3), 226–235 (2018)

    Article  Google Scholar 

  • E. Pais, J.S. Cambridge, C.S. Johnson, H.J. Meiselman, T.C. Fisher, T. Alexy, A novel high-throughput screening assay for sickle cell disease drug discovery. J. Biomol. Screen. 14(4), 330–336 (2009)

    Article  Google Scholar 

  • Y. Qiang, J. Liu, M. Dao, S. Suresh, E. Du, (2019). Mechanical fatigue of human red blood cells. Proc. Natl. Acad. Sci. U.S.A.: 201910336

  • G. Qiao, W. Wang, W. Duan, F. Zheng, A.J. Sinclair, C.R. Chatwin, Bioimpedance analysis for the characterization of breast cancer cells in suspension. IEEE. Trans. Biomed. Eng. 59(8), 2321–2329 (2012)

    Article  Google Scholar 

  • A.M. Redwood, E.M. Williams, P. Desal, G.R. Serjeant, Climate and painful crisis of sickle-cell disease in Jamaica. brit. Med. J. 1(6001), 66 (1976)

    Article  Google Scholar 

  • J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9(7), 676–682 (2012)

    Article  Google Scholar 

  • F. Seoane, K. Lindecrantz, T. Olsson, I. Kjellmer, A. Flisberg, R. Bagenholm, Brain Electrical Impedance at Various Frequencies: The Effect of Hypoxia (Conf Proc IEEE Eng Med Biol Soc, IEEE, 2004)

    Google Scholar 

  • A. Soley, M. Lecina, X. Gámez, J. Cairo, P. Riu, X. Rosell, R. Bragos, F. Godia, On-line monitoring of yeast cell growth by impedance spectroscopy. J. Biotechnol. 118(4), 398–405 (2005)

    Article  Google Scholar 

  • M. Tsai, A. Kita, J. Leach, R. Rounsevell, J.N. Huang, J. Moake, R.E. Ware, D.A. Fletcher, W.A. Lam, (2011). In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J. Clin. Invest. 122(1)

  • Van E.J. Beers, L. Samsel, L. Mendelsohn, R. Saiyed, K.Y. Fertrin, C.A. Brantner, M.P. Daniels, J. Nichols, J.P. McCoy, G.J. Kato, Imaging flow cytometry for automated detection of hypoxia-induced erythrocyte shape change in sickle cell disease. Am. J. Hematol. 89(6), 598–603 (2014)

    Article  Google Scholar 

  • E. Vichinsky, C.C. Hoppe, K.I. Ataga, R.E. Ware, V. Nduba, A. El-Beshlawy, H. Hassab, M.M. Achebe, S. Alkindi, R.C. Brown, A phase 3 randomized trial of voxelotor in sickle cell disease. N Engl. J. Med. 381(6), 509–519 (2019)

    Article  Google Scholar 

  • D.K. Wood, A. Soriano, L. Mahadevan, J.M. Higgins, S.N. Bhatia, (2012). A biophysical indicator of vaso-occlusive risk in sickle cell disease. Sci. Transl. Med. 4(123): 123ra126-123ra126

  • X. Yang, J. Kanter, N.Z. Piety, M.S. Benton, S.M. Vignes, S.S. Shevkoplyas, A simple, rapid, low-cost diagnostic test for sickle cell disease. Lab. Chip. 13(8), 1464–1467 (2013)

    Article  Google Scholar 

  • M. Zarei, Portable biosensing devices for point-of-care diagnostics: recent developments and applications. TrAC - Trends Anal. Chem. 91, 26–41 (2017)

    Article  Google Scholar 

  • L. Zhao, J. Chen, J. Su, L. Li, S. Hu, B. Li, X. Zhang, Z. Xu, T. Chen, In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. J. Agric. Food Chem. 61(44), 10604–10611 (2013)

    Article  Google Scholar 

  • W. Zhao, S. Tian, L. Huang, K. Liu, L. Dong, The Rev. Lab-on‐PCB biomedical application Electrophoresis. 41(16–17), 1433–1445 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF Grants # 1635312 and # 2032730. Authors D.D. and E.D. acknowledge the support from NIH R01EB025819.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Du.

Ethics declarations

Competing Interests

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiang, Y., Dieujuste, D., Liu, J. et al. Rapid electrical impedance detection of sickle cell vaso-occlusion in microfluidic device. Biomed Microdevices 25, 23 (2023). https://doi.org/10.1007/s10544-023-00663-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-023-00663-1

Keywords

Navigation