Skip to main content
Log in

Machine learning-based classification for predicting the power flow of surface plasmon polaritons in nanoplasmonic coupler

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Using a combination of the finite element method (FEM) applied in COMSOL Multiphysics and the machine learning (ML)-based classification models, a computational tool has been developed to predict the appropriate amount of power flow in a plasmonic structure. As a plasmonic coupler, a proposed structure formed of an annular configuration with teeth-shaped internal corrugations and a center nanowire is presented. The following representative data mining techniques: standalone J48 decision tree, support vector machine (SVM), Hoeffding tree, and Naïve Bayes are systematically used. First, a FEM is used to obtain power flow data by taking into consideration a geometrical dimensions, involving a nanowire radius, tooth profile, and nanoslit width. Then, we use them as inputs to learn about machine how to predicate the appropriate power flow without needing FEM of COMSOL, this will reduce financial consumption, time and effort. Therefore, we will determine the optimum approach for predicting the power flow of the proposed structure in this work based on the confusion matrix. It is envisaged that these predictions’ results will be important for future optoelectronic devices for extraordinary optical transmission (EOT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Song, M., Wang, D., Kudyshev, Z.A., Xuan, Y., Wang, Z., Boltasseva, A., Shalaev, V.M., Kildishev, A.V.: Laser Photonics Rev. 15, 3 (2021)

    Google Scholar 

  2. Dhawan, A.R., Nasilowski, M., Wang, Z., Dubertret, B., Maitre, A.: Adv. Mater. 34, 11 (2022)

    Article  Google Scholar 

  3. Su, D., Zhang, X.Y., Ma, Y.L., Shan, F., Wu, J.Y., Fu, X.C., Zhang, L.J., Yuan, K.Q., Zhang, T.: IEEE Photonics J. 11, 10 (2017)

    Google Scholar 

  4. Maier, S.A.: Plasmonics fundamentals and applications. In: Maier, S.A. (ed.) Springer Science Business Media. Springer, US, New York (2007)

    Google Scholar 

  5. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Nature 424, 6950 (2003)

    Article  Google Scholar 

  6. Zayats, A.V., Smolyaninov, I.I., Maradudin, A.A.: Phys. Rep. 408, 3–4 (2005)

    Article  Google Scholar 

  7. Novotny, L., Van Hulst, N.: Nat. Photonics 5, 2 (2011)

    Article  Google Scholar 

  8. Ding, L., Wang, L.: Appl. Phys. A 119, 3 (2015)

    Article  Google Scholar 

  9. Aparna, U., Mruthyunjaya, H.S., Sathish, K.M.: J. Opt. 49, 1 (2020)

    Article  Google Scholar 

  10. Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A.: Nature 391, 6668 (1998)

    Article  Google Scholar 

  11. Beruete, M., Sorolla, M., Campillo, I.: Opt. Express 14, 12 (2006)

    Article  Google Scholar 

  12. Sturman, B., Podivilov, E.: Gorkunov. phys rev B 77(7), 075106 (2008)

    Article  ADS  Google Scholar 

  13. Wang, Q., Wang, L.: Lab-on-fiber Nanoscale. 12, 14 (2020)

    Article  Google Scholar 

  14. Duan, Y., Yin, S., Gao, H., Zhou, C., Wei, Q., Du, C.: Opt. Laser Technol. 44, 1 (2012)

    Article  Google Scholar 

  15. Liu, Y.J., Si, G.Y., Leong, E.S., Xiang, N., Danner, A.J., Teng, J.H.: Adv. Mater. 19, 23 (2012)

    Google Scholar 

  16. Daniel, S., Saastamoinen, K., Saastamoinen, T., Rahomäki, J., Friberg, A.T., Visser, T.D.: Opt. Express 24, 17 (2015)

    Google Scholar 

  17. Poujet, Y., Salvi, J.: and fadi issam baida. Opt. Lett. 32, 20 (2007)

    Google Scholar 

  18. Wang, C., Bai, M., Jin, M., Zhang, Y.: Optik 123, 20 (2021)

    Google Scholar 

  19. Xie, Y., Zakharian, A.R., Moloney, J.V., Mansuripur, M.: Opt. Express 13, 25 (2004)

    Google Scholar 

  20. Corcione, E., Pfezer, D., Hentschel, M., Giessen, H., Tarín, C.: Sensors 21, 1 (2021)

    Article  Google Scholar 

  21. Valdivia-Valero, F.J., Nieto-Vesperinas, M.: J. Nanophotonics 5, 1 (2011)

    Article  Google Scholar 

  22. Valdivia-Valero, F.J.: and manuel nieto-vesperinas. Opt. Express 18, 7 (2010)

    Google Scholar 

  23. Baxter, J., Calà Lesina, A., Guay, J.M., Weck, A., Berini, P., Ramunno, L.: Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  24. He, J., He, C., Zheng, C., Wang, Q., Ye, J.: Nanoscale 11, 37 (2019)

    Google Scholar 

  25. Arzola-Flores, J.A., González, A.L.: J Phys Chem C 124, 46 (2020)

    Article  Google Scholar 

  26. Genevet, P., Tetienne, J.P., Gatzogiannis, E., Blanchard, R., Kats, M.A., Scully, M.O., Capasso, F.: Nano Lett. 8, 12 (2010)

    Google Scholar 

  27. Alam, M.Z., Yang, Z., Sheik-Bahae, M., Aitchison, J.S., Mojahedi, M.: Sci. Rep. 11, 1 (2021)

    Article  Google Scholar 

  28. Tu, Q., Liu, J., Ke, S., Wang, B., Lu, P.: Plasmonics 15, 3 (2019)

    Google Scholar 

  29. Mishra, M., Sharma, M., Gupta, P.: Physica E 1, 130 (2021)

    Google Scholar 

  30. Ioannidis, T., Gric, T., Rafailov, E.: Opt. Quant. Electron. 52, 1 (2020)

    Article  Google Scholar 

  31. Khoshdel, V., Shokooh-Saremi, M.: JOSA B 38, 5 (2021)

    Article  Google Scholar 

  32. Kehn, M.N., Mou,: and Jen Yung Li. IEEE Trans. Microw. Theory Tech. 66, 4 (2018)

    Google Scholar 

  33. Mudhafer, A., Zahraa, S.: Khaleel, and Ra’ed Malallah. J. Comput. Electron. 20, 5 (2021)

    Google Scholar 

  34. Singh, L., Maccaferri, N., Garoli, D., Gorodetski, Y.: Nanomaterials 11, 5 (2021)

    Google Scholar 

  35. Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar. (2016) Introduction to data mining India: Pearson Education (ed.) 231

  36. Xiang, Y., Dai, X., Guo, J., Zhang, H., Wen, S., Tang, D.: Sci. Rep. 4, 1 (2016)

    Google Scholar 

  37. Lv, T.T., et al.: Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  38. Jinhui, S., et al.: J Mater Chem 6, 6 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mudhafer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaleel, Z.S., Mudhafer, A. Machine learning-based classification for predicting the power flow of surface plasmon polaritons in nanoplasmonic coupler. Opt Rev 30, 454–461 (2023). https://doi.org/10.1007/s10043-023-00822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00822-y

Keywords

Navigation