Skip to main content
Log in

Origin of a carbonate-bearing fluorapatite from Tertiary volcanics of the Veneto Volcanic Province, Italy

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present chemical and mineralogical data on a megacryst of a unique carbonate-bearing fluorapatite from altered Tertiary volcanics of the Veneto Volcanic Province (VVP) in the western Lessini Mountain range (Veneto, northern Italy). The cm-sized specimen was identified and characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRPD), micro-Raman spectroscopy and electron probe microanalyses. Major and trace elements of the carbonate-bearing fluorapatite are consistent with the crystallization at depth from a nelsonitic melt or an evolved alkaline melt derived from a mantle source metasomatized by carbonate-rich fluids. The Sr and Nd isotopic composition fits with the lavas and xenoliths from the VVP showing a DM-HIMU affinity with addition of a crustal, possibly carbonate, component. Our data are in agreement with a recent geodynamic model for the hybridization of the VVP mantle triggered by breakdown of carbonates within the subducting Tethyan oceanic slab. Cronstedtite, chabazite-Ca, calcite associated with reaction rims of amphibole and secondary carbonate-rich fluorapatite within the megacryst originated from low temperature hydrothermal alteration of the volcanics. Cronstedtite is the first occurrence in the VVP area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albers E, Bach W, Pérez-Gussinyé M, McCammon C, Frederichs T (2021) Serpentinization-Driven H2 Production From Continental Break-Up to Mid-Ocean Ridge Spreading: Unexpected High Rates at the West Iberia Margin. Front Earth Sci 9:673063

    Article  Google Scholar 

  • Anenburg M, Mavrogenes JA, Frigo C, Wall F (2020) Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Sci Adv 6(41):eabb6570

  • Awonusi A, Morris MD, Tecklenburg MM (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calc Tissue Int 81(1):46–52

    Article  Google Scholar 

  • Bain WM, Steele-MacInnis M, Li K, Li L, Mazdab FK, Marsh EE (2020) A fundamental role of carbonate–sulfate melts in the formation of iron oxide–apatite deposits. Nat Geosci 13(11):751–757

    Article  Google Scholar 

  • Barbieri G, De Zanche V, Medizza F, Sedea R (1982) Considerazioni sul vulcanismo Terziario del Veneto Occidentale e del Trentino Meridionale. Rend Soc Geol It 4:267–270

    Google Scholar 

  • Barbieri G, De Zanche F, Sedea R (1991) Evoluzione del semigraben paleogenico Alpone-Agno (Monti Lessini). Rend Soc Geol It 14:5–12

    Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Min Pet 123(3):323–333

    Article  Google Scholar 

  • Beccaluva L, Bianchini G, Bonadiman C, Coltorti M, Milani L, Salvini L, Siena F, Tassinari R (2007) Intraplate lithospheric and sublithospheric components in the Adriatic domain: Nephelinite to tholeiite magma generation in the Paleogene Veneto volcanic province southern Alps. Spec Papers Geol Soc Am 418:131

    Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochem Expl 76(1):45–69

    Article  Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geo 76(4):382–403

  • Bonadiman C, Coltorti M, Milani L, Salvini L, Siena F, Tassinari R (2001) Metasomatism in the lithospheric mantle and its relationships to magmatism in the Veneto Volcanic Province Italy. Per Mineral 70(3):333–357

    Google Scholar 

  • Bonel G, Montel G (1964) Sur une nouvelle apatite carbonatée synthétique. Compt Rend Acad Sci 923–926

  • Bosellini A, Carraro F, Corsi M, De Vecchi G, Gatto G, Malaroda R, Sturani C, Ungaro S, Zanettin B (1967) Note illustrative della Carta Geologico d’Italia, foglio 49 “Verona”. Servizio Geologico d’Italia, pp 1–61

  • Braga R, Morten L, Zanetti A (2006) Origin of a mica megacryst in an alkaline dyke from the Veneto Volcanic Province Italy. Europ J Min 18(2):223–231

    Article  Google Scholar 

  • Brombin V, Bonadiman C, Coltorti M, Fahnestock MF, Bryce JG, Marzoli A (2018) Refertilized mantle keel below the Southern Alps domain (North-East Italy): evidence from Marosticano refractory mantle peridotites. Lithos 300:72–85

    Article  Google Scholar 

  • Brombin V, Bonadiman C, Jourdan F, Roghi G, Coltorti M, Webb LE, Marzoli A (2019) Intraplate magmatism at a convergent plate boundary: The case of the Cenozoic northern Adria magmatism. Earth Sci Rev 192:355–378

  • Brunelli D, Sanfilippo A, Bonatti E, Skolotnev S, Escartin J, Ligi M, Cipriani A (2020) Origin of oceanic ferrodiorites by injection of nelsonitic melts in gabbros at the Vema Lithospheric Section Mid Atlantic Ridge. Lithos 368:105589

    Article  Google Scholar 

  • Brunelli D, Seyler M, Cipriani A, Ottolini L, Bonatti E (2006) Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema lithospheric section (Mid-Atlantic Ridge). J Pet 47(4):745–771

  • Cannatelli C (2012) Multi-stage metasomatism in the lithosphere beneath the Veneto Volcanic Province (VVP Northern Italy). Mineral Petrol 104(3):177–195

    Article  Google Scholar 

  • Carpenter R (1969) Factors controlling the marine geochemistry of fluorine. Geochim Cosmochim Acta 33(10):1153–1167

    Article  Google Scholar 

  • Chakhmouradian AR, Medici L (2006) Clinohydroxylapatite: a new apatite-group mineral from northwestern Ontario (Canada), and new data on the extent of Na-S substitution in natural apatites. European J Min 18(1):105–112

    Article  Google Scholar 

  • Chakhmouradian AR, Reguir EP, Zaitsev AN, Couëslan C, Xu C, Kynický J, Yang P (2017) Apatite in carbonatitic rocks: Compositional variation zoning element partitioning and petrogenetic significance. Lithos 274:188–213

    Article  Google Scholar 

  • Charlier B, Namur O, Bolle O, Latypov R, Duchesne J-C (2015) Fe-Ti-V-P ore deposits associated with Proterozoicmassif-type anorthosites and related rocks. Earth Sci Rev 141:56–81

    Article  Google Scholar 

  • Charlier B, Sakoma E, Sauvé M, Stanaway K, Vander Auwera J, Duchesne JC (2008) The Grader layered intrusion (Havre-Saint-Pierre Anorthosite Quebec) and genesis of nelsonite and other Fe–Ti–P ores. Lithos 101(3–4):359–378

    Article  Google Scholar 

  • Chu MF, Wang KL, Griffin WL, Chung SL, O’Reilly SY, Pearson NJ, Iizuka Y (2009) Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids. J Petrol 50(10):1829–1855

    Article  Google Scholar 

  • Cipriani A (1997) Rilevamento geologico di un settore della Valpantena tra Ceredo e M. Fiamene (M. Lessini Occidentali), Università degli studi di Padova, pp 34

  • Connors L, Carley TL, Fiege A (2020) Apatite as a Monitor of Dynamic Magmatic Evolution at Torfajökull Volcanic Center, Iceland. In: Vetere F and Fiege A (eds) Dynamic Magma Evolution. AGU Geophys Monograph John Wiley & Sons pp 61–88

  • Coombs DS, Alberti A, Armbruster T, Artioli G, Colella C, Galli E, Grice JD, Liebau F, Mandarino JA, Minato H, Nickel EH (1998) Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Mineral Mag 62(4):533–571

    Article  Google Scholar 

  • Creaser RA, Gray CM (1992) Preserved initial 87Sr86Sr in apatite from altered felsic igneous rocks: a case study from the Middle Proterozoic of South Australia. Geochim Cosmochim Acta 56(7):2789–2795

  • De Vecchi G, Gregnanin A, Piccirillo EM (1976) Aspetti petrogenetici del vulcanesimo terziario Veneto. Mem Ist Geol Min Univ Pad 30:1–63

    Google Scholar 

  • De Vecchi G, Sedea R (1995) The Paleogene basalts of the Veneto Region (NE Italy). Mem Sci Geol 47:253–274

    Google Scholar 

  • Dixon J, Clague DA, Cousens B, Monsalve ML, Uhl J (2008) Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated–stage lavas from Niihau, Hawaii. Geochem Geophys Geosys 9(9)

  • Doherty AL, Webster JD, Goldoff BA, Piccoli PM (2014) Partitioning behavior of chlorine and fluorine in felsic melt–fluid (s)–apatite systems at 50 MPa and 850–950 C. Chem Geol 384:94–111

    Article  Google Scholar 

  • Elliott HAL, Wall F, Chakhmouradian AR, Siegfried PR, Dahlgren S, Weatherley S, Finch AA, Marks MAW, Dowman E, Deady E (2018) Fenites associated with carbonatite complexes: A review. Ore Geo Rev 93:38–59

    Article  Google Scholar 

  • Filippelli GM (2002) The global phosphorus cycle. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological, and materials importance. Rev Mineral Geochem (Washington DC) 48(1):391–425

  • Fujimaki H (1986) Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contr Mineral Petrol 94(1):42–45

    Article  Google Scholar 

  • Gaeta M, Bonechi B, Marra F, Perinelli C (2021) Uncommon K-foiditic magmas: The case study of Tufo del Palatino (Colli Albani Volcanic District, Italy). Lithos 396:106239

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1995) Partitioning of rare earth elements between clinopyroxene and silicate melt Crystal-chemical controls. Geochim Cosmochim Acta 59(10):1951–1962

    Article  Google Scholar 

  • Gasperini D, Bosch D, Braga R, Bondi M, Macera P, Morten L (2006) Ultramafic xenoliths from the Veneto Volcanic Province (Italy): Petrological and geochemical evidence for multiple metasomatism of the SE Alps mantle lithosphere. Geochem J 40(4):377–404

    Article  Google Scholar 

  • Giovanardi T, Mazzucchelli M, Lugli F, Girardi VA, Correia CT, Tassinari CC, Cipriani A (2018) Isotopic constraints on contamination processes in the Tonian Goiás Stratiform Complex. Lithos 310:136–152

    Article  Google Scholar 

  • Goldstein JI, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning Electron Microscopy and X-Ray Microanalysis. New York: Plenum Press

  • Green TH, Watson EB (1982) Crystallization of apatite in natural magmas under high pressure hydrous conditions with particular reference to ‘Orogenic’ rock series. Contrib Mineral Petrol 79:96–105

    Article  Google Scholar 

  • Guggenheim S, Eggleton RA (1998) Modulated crystal structures of greenalite and caryopilite; a system with long-range, in-plane structural disorder in the tetrahedra sheetl. The Can Min 36(1):163–179

    Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Mineral 97(11–12):2031–2048

    Article  Google Scholar 

  • Hou T, Charlier B, Holtz F, Veksler I, Zhang Z, Thomas R, Namur O (2018) Immiscible hydrous Fe–Ca–P melt and the origin of iron oxide-apatite ore deposits. Nat Commun 9(1):1–8

  • Hubbard CR, Snyder RL (1988) RIR-measurement and use in quantitative XRD. Powder Diffr 3(2):74–77

    Article  Google Scholar 

  • Hughes JM, Cameron M, Crowley KD (1989) Structural variations in natural F OH and Cl apatites. Am Mineral 74:870–876

    Google Scholar 

  • Hughes JM, Cameron M, Crowley KD (1990). Crystal structures of natural ternary apatites; solid solution in the Ca5 (PO4) 3 X (X= F, OH, Cl) system. Am Mineral 75(3–4):295–304

  • Hurai V, Huraiová M, Habler G, Horschinegg M, Milovský R, Milovská S, Hain M, Abart R (2022) Carbonatite-melilitite-phosphate immiscible melts from the aragonite stability field entrained from the mantle by a Pliocene basalt. Min Pet 1–30

  • Hybler J, Petříček V, Ďurovič S, Smrčok Ĺ (2000) Refinement of the crystal structure of cronstedtite-1T. Clays Clay Min 48(3), 331–338

  • Ionov DA, O’Reilly SY, Genshaft YS, Kopylova MG (1996) Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral compositions and trace-element residence. Contrib Mineral Petrol 125(4):375–92

  • Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. Am J Sci 280(2):389–426

    Google Scholar 

  • Irving AJ, Frey FA (1984) Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochim Cosmochim Acta 48(6):1201–1221

    Article  Google Scholar 

  • Jackson MG, Dasgupta R (2008) Compositions of HIMU, EM1 and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett 276:175–186

    Article  Google Scholar 

  • Jarosewich E (2002) Smithsonian microbeam standards. J Res Natl Inst Stand Technol 107(6):681

    Article  Google Scholar 

  • Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4(1):43–47

    Article  Google Scholar 

  • Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29(3):333–338

    Article  Google Scholar 

  • Klemme S, Dalpé C (2003) Trace-element partitioning between apatite and carbonatite melt. Am Mineral 88(4):639–646

    Article  Google Scholar 

  • Knudsen AC, Gunter ME (2002) Sedimentary Phosphorites—An Example: Phosphoria Formation, Southeastern Idaho, U.S.A.. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological, and materials importance. Rev Mineral Geochem, vol 48. Miner Soc Am, Washington DC, pp 363–389

  • Kohn MJ, Rakovan J, Hughes JM (2002) Phosphates: geochemical, geobiological, and materials importance. Rev Mineral Geochem, vol 48. Miner Soc Am, Washington DC

  • Larson AC, Von Dreele RB (1999) Report LAUR LANL 86–748 Los Alamos National Laboratory USA

  • Leterrier J, Maury RC, Thonon P, Girard D, Marchal M (1982) Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet Sci Lett 59(1):139–54

  • Li W, Costa F, Nagashima K (2021) Apatite crystals reveal melt volatile budgets and magma storage depths at Merapi volcano, Indonesia. J Pet 62(4):egaa100

  • Lugli F, Cipriani A, Arnaud J, Arzarello M, Peretto C, Benazzi S (2017a) Suspected limited mobility of a Middle Pleistocene woman from Southern Italy: strontium isotopes of a human deciduous tooth. Sci Rep 7(1):1–8

    Article  Google Scholar 

  • Lugli F, Cipriani A, Peretto C, Mazzucchelli M, Brunelli D (2017b) In situ high spatial resolution 87Sr/86Sr ratio determination of two Middle Pleistocene (ca 580 ka) Stephanorhinus hundsheimensis teeth by LA–MC–ICP–MS. Int J Mass Spectrom 412:38–48

    Article  Google Scholar 

  • Lugli F, Weber M, Giovanardi T, Arrighi S, Bortolini E, Figus C, Marciani G, Oxilia G, Romandini M, Silvestrini S, Jochum KP, Benazzi S, Cipriani A (2020) Fast offline data reduction of laser ablation MC-ICP-MS Sr isotope measurements via an interactive Excel-based spreadsheet ‘SrDR’. J Anal Spectrosc 35(5):852–862

    Article  Google Scholar 

  • Macera P, Gasperini D, Piromallo C, Blichert-Toft J, Bosch D, Del Moro A, Martin S (2003) Geodynamic implications of deep mantle upwelling in the source of Tertiary volcanics from the Veneto region (Southern-Eastern Alps). J Geodyn 36:563–590

    Article  Google Scholar 

  • Mattioli M, Cenni M, Passaglia E (2016) Secondary mineral assemblages as indicators of multistage alteration processes in basaltic lava flows: evidence from the Lessini Mountains, Veneto Volcanic Province, Northern Italy. Per Mineral 85:1–24

    Google Scholar 

  • McArthur JM, Howarth RI, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Article  Google Scholar 

  • Morten L (1987) Italy: a review of xenolithic occurrences and their comparison with Alpine peridotites. In: Mantle xenoliths P H Nixon ed John Wiley and Sons 135–148

  • Morten L, De Francesco AM (1993) Megacrysts in basanites from Monti Lessini Veneto Region northern Italy. Rend Fis Acc Lincei 4:315–336

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (2000) Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 53:217–232

    Article  Google Scholar 

  • Pan Y, Fleet ME (2002) Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological, and materials importance. Rev Mineral Geochem, vol 48. Miner Soc Am, Washington DC, pp 13–49

  • Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ (2010) Nomenclature of the apatite supergroup minerals. Europ J Mineral 22(2):163–179

    Article  Google Scholar 

  • Paster TP, Schauwecker DS, Haskin LA (1974) The behavior of some trace elements during solidification of the Skaergaard layered series. Geochim Cosmochim Acta 38(10):1549–1577

    Article  Google Scholar 

  • Pasteris JD, Yoder CH, Wopenka B (2014) Molecular water in nominally unhydrated carbonated hydroxylapatite: The key to a better understanding of bone mineral. Am Min 99(1):16–27

    Article  Google Scholar 

  • Piccoli PM, Candela PA (2002) Apatite in igneous systems. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological, and materials importance. Rev Mineral Geochem, vol 48. Miner Soc Am, Washington DC, pp 255–292

  • Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70(17):4513–4527

    Article  Google Scholar 

  • Putirka K, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria 0–30 kbar. Contrib Mineral Petrol 123(1):92–108

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and Barometers for Volcanic Systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Rønsbo JG (1989) Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilímaussaq intrusion, South Greenland, and the petrological implications. Am Miner 74:896–901

    Google Scholar 

  • Rønsbo JG (2008) Apatite in the Ilímaussaq alkaline complex: Occurrence, zonation and compositional variation. Lithos 106(1–2):71–82

  • Ruttenberg KC (2014) The global phosphorus cycle. In: Holland HD, Turekian KK (eds) Treatise on geochemistry (Second Edition), vol 10. Elsevier, pp 499–558

    Chapter  Google Scholar 

  • Shaw CS, Eyzaguirre J (2000) Origin of megacrysts in the mafic alkaline lavas of the West Eifel volcanic field Germany. Lithos 50(1–3):75–95

    Article  Google Scholar 

  • Siena F, Coltorti M (1989) Lithospheric mantle evolution: evidences from ultramafic xenoliths in the Lessinian volcanics (Northern Italy). Chem Geol 77(3–4):347–364

    Article  Google Scholar 

  • Suetsugu Y, Takahashi Y, Okamura FP, Tanaka J (2000) Structure analysis of A-type carbonate apatite by a single-crystal X-ray diffraction method. J Solid State Chem 155(2):292–297

    Article  Google Scholar 

  • Tacker RC (2004) Hydroxyl ordering in igneous apatite. Am Min 89(10):1411–1421

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168(3–4):279–281

    Article  Google Scholar 

  • Tatsumi Y (2005) The subduction factory: How it operates in the evolving Earth. GSA Today 15(7):4

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI a graphical user interface for GSAS. J Appl Cryst 34:210–213

    Article  Google Scholar 

  • Tollari N, Toplis MJ, Barnes SJ (2006) Predicting phosphate saturation in silicate magmas: an experimental study of the effects of melt composition and temperature. Geochim Cosmochim Acta 70(6):1518–1536

    Article  Google Scholar 

  • Vacher LG, Truche L, Faure F, Tissandier L, Mosser-Ruck R, Marrocchi Y (2019) Deciphering the conditions of tochilinite and cronstedtite formation in CM chondrites from low temperature hydrothermal experiments. Meteor Planet Sci 54(8):1870–1889

    Article  Google Scholar 

  • Wang X, Hou T, Wang M, Zhang C, Zhang Z, Pan R, Marxer F (2021) Zhang H (2021) A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. European J Min 33(5):621–637

    Article  Google Scholar 

  • Watson EB, Green TH (1981) Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet Sci Lett 56:405–421

    Article  Google Scholar 

  • Weber M, Lugli F, Jochum KP, Cipriani A, Scholz D (2018) Calcium carbonate and phosphate reference materials for monitoring bulk and microanalytical determination of Sr isotopes. Geost Geoanal Res 42:77–89

    Article  Google Scholar 

  • Webster JD, Piccoli PM (2015) Magmatic apatite: A powerful yet deceptive mineral. Elements 11(3):177–182

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107(2):305–317

    Article  Google Scholar 

  • Zaitsev AN, Wenzel T, Vennemann T, Markl G (2013) Tinderet volcano, Kenya: an altered natrocarbonatite locality? Mineral Mag 77(3):213–226

  • Zampieri D (1995) Tertiary extension in the Southern Trento Platform Southern Alps Italy. Tectonics 14:645–657

    Article  Google Scholar 

  • Zirner AL, Marks MA, Wenzel T, Jacob DE, Markl G (2015) Rare earth elements in apatite as a monitor of magmatic and metasomatic processes: The Ilímaussaq complex, South Greenland. Lithos 228:12–22

    Article  Google Scholar 

Download references

Acknowledgements

We thank Simona Marchetti Dori for assistance in acquiring the SEM data and Alessandro Frontoni for micro-Raman spectra. We also wish to thank three anonymous reviewers and the handling editor Kirtikumar R. Randive for their constructive reviews.

Funding

A.C. acknowledges funding by the “Progetti di ricerca di Rilevante Interesse Nazionale” PRIN – Bando 2017 – Protocol 20178LPCPW. D.B. acknowledges funding by PRIN – Bando 2017 – Protocol 2017KY5ZX8. M.M. acknowledges funding by PRIN – Bando 2015 – Protocol 20158A9CBM_005. A.F.G acknowledges funding by PRIN – Bando 2017 – Protocol 20173X8WA4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Cipriani or Maurizio Mazzucchelli.

Additional information

Editorial handling: K. R. Randive

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1844 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cipriani, A., Giovanardi, T., Mazzucchelli, M. et al. Origin of a carbonate-bearing fluorapatite from Tertiary volcanics of the Veneto Volcanic Province, Italy. Miner Petrol 117, 573–594 (2023). https://doi.org/10.1007/s00710-023-00831-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-023-00831-4

Keywords

Navigation