Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Opportunities and challenges with hyperpolarized bioresponsive probes for functional imaging using magnetic resonance

Abstract

The development of hyperpolarized bioresponsive probes for magnetic resonance imaging (MRI) applications is an emerging and rapidly growing topic in chemistry. A wide range of hyperpolarized molecular biosensors for functional MRI have been developed in recent years. These probes comprise many different types of small-molecule reporters that can be hyperpolarized using dissolution dynamic nuclear polarization and parahydrogen-induced polarization or xenon-chelated macromolecular conjugates hyperpolarized using spin-exchange optical pumping. In this Perspective, we discuss how the amplified magnetic resonance signals of these agents are responsive to biologically relevant stimuli such as target proteins, reactive oxygen species, pH or metal ions. We examine how functional MRI using these systems allows a great number of biological processes to be monitored rapidly. Consequently, hyperpolarized bioresponsive probes may play a critical role in functional molecular imaging for observing physiology and pathology in real time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Towards the utilization of hyperpolarized bioresponsive probes for functional molecular imaging with magnetic resonance.
Fig. 2: Bioresponsive agents hyperpolarized using dDNP.
Fig. 3: Bioresponsive hyperCEST 129Xe agents.
Fig. 4: Producing hyperpolarized agents for bioimaging using pH2.

Similar content being viewed by others

References

  1. Dale, B. M., Brown, M. A., Semelka, R. C. & Brown, M. A. MRI: Basic Principles and Applications 5th edn (John Wiley & Sons, 2015).

  2. Nikolaou, P., Goodson, B. M. & Chekmenev, E. Y. NMR hyperpolarization techniques for biomedicine. Chem. Eur. J. 21, 3156–3166 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Keshari, K. R. & Wilson, D. M. Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem. Soc. Rev. 43, 1627–1659 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Meersmann, T & Brunner, E. Hyperpolarized Xenon-129 Magnetic Resonance: Concepts, Production, Techniques and Applications (Royal Society of Chemistry, 2015).

  5. Schröder, L. in Hyperpolarized and Inert Gas MRI (eds Albert, M. S. & Hane, F. T.) 263–277 (Academic Press, 2017).

  6. Hövener, J.-B. et al. Parahydrogen-based hyperpolarization for biomedicine. Angew. Chem. Int. Ed. 57, 11140–11162 (2018).

    Article  Google Scholar 

  7. Sherry, A. D. & Woods, M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu. Rev. Biomed. Eng. 10, 391–411 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Angelovski, G. Heading toward macromolecular and nanosized bioresponsive MRI probes for successful functional imaging. Acc. Chem. Res. 50, 2215–2224 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Li, H. & Meade, T. J. Molecular magnetic resonance imaging with Gd(iii)-based contrast agents: challenges and key advances. J. Am. Chem. Soc. 141, 17025–17041 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wei, H., Frey, A. M. & Jasanoff, A. Molecular fMRI of neurochemical signaling. J. Neurosci. Meth. 364, 109372 (2021).

    Article  CAS  Google Scholar 

  12. Kondo, Y., Nonaka, H., Takakusagi, Y. & Sando, S. Design of nuclear magnetic resonance molecular probes for hyperpolarized bioimaging. Angew. Chem. Int. Ed. 60, 14779–14799 (2021).

    Article  CAS  Google Scholar 

  13. The top 10 causes of death. World Health Organization https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (2020).

  14. Nelson, S. J. et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci. Transl. Med. 5, 198ra108 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ardenkjær-Larsen, J. H. et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl Acad. Sci. USA 100, 10158–10163 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Doura, T., Hata, R., Nonaka, H., Ichikawa, K. & Sando, S. Design of a 13C magnetic resonance probe using a deuterated methoxy group as a long-lived hyperpolarization unit. Angew. Chem. Int. Ed. 51, 10114–10117 (2012).

    Article  CAS  Google Scholar 

  17. Lippert, A. R., Keshari, K. R., Kurhanewicz, J. & Chang, C. J. A hydrogen peroxide-responsive hyperpolarized 13C MRI contrast agent. J. Am. Chem. Soc. 133, 3776–3779 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wibowo, A., Park, J. M., Liu, S.-C., Khosla, C. & Spielman, D. M. Real-time in vivo detection of H2O2 using hyperpolarized 13C-thiourea. ACS Chem. Biol. 12, 1737–1742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jindal, A. K. et al. Hyperpolarized 89Y complexes as pH sensitive NMR probes. J. Am. Chem. Soc. 132, 1784–1785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hata, R., Nonaka, H., Takakusagi, Y., Ichikawa, K. & Sando, S. Design of a hyperpolarized 15N NMR probe that induces a large chemical-shift change upon binding of calcium ions. Chem. Commun. 51, 12290–12292 (2015).

    Article  CAS  Google Scholar 

  21. Mishra, A., Pariani, G., Oerther, T., Schwaiger, M. & Westmeyer, G. G. Hyperpolarized multi-metal 13C-sensors for magnetic resonance imaging. Anal. Chem. 88, 10790–10794 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Nonaka, H. et al. A platform for designing hyperpolarized magnetic resonance chemical probes. Nat. Commun. 4, 2441 (2013).

    Article  Google Scholar 

  23. Hundshammer, C. et al. Hyperpolarized amino acid derivatives as multivalent magnetic resonance pH sensor molecules. Sensors 18, 600 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nishihara, T. et al. A strategy to design hyperpolarized 13C magnetic resonance probes using [1-13C]α-amino acid as a scaffold structure. Chem. Asian J. 12, 949–953 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Düwel, S. et al. Imaging of pH in vivo using hyperpolarized 13C-labelled zymonic acid. Nat. Commun. 8, 15126 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gallagher, F. A. et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453, 940–943 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Hundshammer, C. et al. Deuteration of hyperpolarized 13C-labeled zymonic acid enables sensitivity-enhanced dynamic MRI of pH. ChemPhysChem 18, 2422–2425 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Korenchan, D. E. et al. Dicarboxylic acids as pH sensors for hyperpolarized 13C magnetic resonance spectroscopic imaging. Analyst 142, 1429–1433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Suh, E. H., Park, J. M., Lumata, L., Sherry, A. D. & Kovacs, Z. Hyperpolarized 15N-labeled, deuterated tris(2-pyridylmethyl)amine as an MRI sensor of freely available Zn2+. Commun. Chem. 3, 185 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, S. et al. Amino acid-derived sensors for specific Zn2+ detection using hyperpolarized 13C magnetic resonance spectroscopy. Chem. Eur. J. 25, 11842–11846 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, Y., Zeng, H., Ruedisser, S., Gossert, A. D. & Hilty, C. Nuclear magnetic resonance of hyperpolarized fluorine for characterization of protein–ligand interactions. J. Am. Chem. Soc. 134, 17448–17451 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Pinon, A. C., Capozzi, A. & Ardenkjær-Larsen, J. H. Hyperpolarization via dissolution dynamic nuclear polarization: new technological and methodological advances. Magn. Reson. Mater. Phys. Biol. Med. 34, 5–23 (2021).

    Article  CAS  Google Scholar 

  33. Khan, A. S. et al. Enabling clinical technologies for hyperpolarized 129xenon magnetic resonance imaging and spectroscopy. Angew. Chem. Int. Ed. 60, 22126–22147 (2021).

  34. Shapiro, M. G. et al. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat. Chem. 6, 630–635 (2014).

    Article  Google Scholar 

  35. Zemerov, S. D. & Dmochowski, I. J. Cryptophane–xenon complexes for 129Xe MRI applications. RSC Adv. 11, 7693–7703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Riggle, B. A., Wang, Y. & Dmochowski, I. J. A. A “smart” 129Xe NMR biosensor for pH-dependent cell labeling. J. Am. Chem. Soc. 137, 5542–5548 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jayapaul, J. & Schröder, L. Probing reversible guest binding with hyperpolarized 129Xe-NMR: characteristics and applications for cucurbit[n]urils. Molecules 25, 957 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kotera, N. et al. A sensitive zinc-activated 129Xe MRI probe. Angew. Chem. Int. Ed. 51, 4100–4103 (2012).

    Article  CAS  Google Scholar 

  39. Schröder, L., Lowery, T. J., Hilty, C., Wemmer, D. E. & Pines, A. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314, 446–449 (2006).

    Article  PubMed  Google Scholar 

  40. Chambers, J. M. et al. Cryptophane zenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase. J. Am. Chem. Soc. 131, 563–569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Witte, C. et al. Live-cell MRI with xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans. Angew. Chem. Int. Ed. 54, 2806–2810 (2015).

    Article  CAS  Google Scholar 

  42. Schlundt, A. et al. A xenon-129 biosensor for monitoring MHC–peptide interactions. Angew. Chem. Int. Ed. 48, 4142–4145 (2009).

    Article  CAS  Google Scholar 

  43. Klass, S. H. et al. Rotaxane probes for the detection of hydrogen peroxide by 129Xe hyperCEST NMR spectroscopy. Angew. Chem. Int. Ed. 58, 9948–9953 (2019).

    Article  CAS  Google Scholar 

  44. Adams, R. W. et al. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323, 1708–1711 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Cavallari, E. et al. The 13C hyperpolarized pyruvate generated by ParaHydrogen detects the response of the heart to altered metabolism in real time. Sci. Rep. 8, 8366 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bhattacharya, P. et al. Parahydrogen-induced polarization (PHIP) hyperpolarized MR receptor imaging in vivo: a pilot study of 13C imaging of atheroma in mice. NMR Biomed. 24, 1023–1028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shchepin, R. V. et al. 15N hyperpolarization of imidazole-15N2 for magnetic resonance pH sensing via SABRE-SHEATH. ACS Sens. 1, 640–644 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Olaru, A. M., Burns, M. J., Green, G. G. R. & Duckett, S. B. SABRE hyperpolarisation of vitamin B3 as a function of pH. Chem. Sci. 8, 2257–2266 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Iali, W. et al. Hyperpolarising pyruvate through signal amplification by reversible exchange (SABRE). Angew. Chem. Int. Ed. 58, 10271–10275 (2019).

    Article  CAS  Google Scholar 

  50. Iali, W., Rayner, P. J. & Duckett, S. B. Using parahydrogen to hyperpolarize amines, amides, carboxylic acids, alcohols, phosphates, and carbonates. Sci. Adv. 4, eaao6250 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.A. gratefully acknowledges financial support from the Shanghai Municipal Science and Technology Major Project (grant no. 2019SHZDZX02) and National Natural Science Foundation of China (grant nos. 22174154 and T2250710181). G.W. gratefully acknowledges financial support from Jiangsu University (grant no. 5501310019), the Natural Science Foundation of Jiangsu Province (grant no. BK20220528) and the National Natural Science Foundation of China (grant no. 22207046).

Author information

Authors and Affiliations

Authors

Contributions

G.A. conceived the idea for this Perspective. G.A., B.J.T. and G.W. contributed to discussions and wrote the manuscript.

Corresponding author

Correspondence to Goran Angelovski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks George Lu, Mor-Miri Mishkovsky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelovski, G., Tickner, B.J. & Wang, G. Opportunities and challenges with hyperpolarized bioresponsive probes for functional imaging using magnetic resonance. Nat. Chem. 15, 755–763 (2023). https://doi.org/10.1038/s41557-023-01211-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01211-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing