Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Lead immobilization for environmentally sustainable perovskite solar cells

Abstract

Lead halide perovskites are promising semiconducting materials for solar energy harvesting. However, the presence of heavy-metal lead ions is problematic when considering potential harmful leakage into the environment from broken cells and also from a public acceptance point of view. Moreover, strict legislation on the use of lead around the world has driven innovation in the development of strategies for recycling end-of-life products by means of environmentally friendly and cost-effective routes. Lead immobilization is a strategy to transform water-soluble lead ions into insoluble, nonbioavailable and nontransportable forms over large pH and temperature ranges and to suppress lead leakage if the devices are damaged. An ideal methodology should ensure sufficient lead-chelating capability without substantially influencing the device performance, production cost and recycling. Here we analyse chemical approaches to immobilize Pb2+ from perovskite solar cells, such as grain isolation, lead complexation, structure integration and adsorption of leaked lead, based on their feasibility to suppress lead leakage to a minimal level. We highlight the need for a standard lead-leakage test and related mathematical model to be established for the reliable evaluation of the potential environmental risk of perovskite optoelectronics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lead-leakage pathways from PSCs and estimation of their potential environment impact.
Fig. 2: Lead-immobilization methodologies in PSCs.
Fig. 3: Proposed lead-leakage measurements and device structure for lead immobilization.

Similar content being viewed by others

References

  1. Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. National Renewable Energy Laboratory (NREL). Best research-cell efficiency chart. NREL https://www.nrel.gov/pv/cell-efficiency.html (2023).

  3. Mei, A. et al. Stabilizing perovskite solar cells to IEC61215:2016 standards with over 9,000-h operational tracking. Joule 4, 2646–2660 (2020).

    Article  CAS  Google Scholar 

  4. Kim, M. et al. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Park, S. Y. et al. Sustainable lead management in halide perovskite solar cells. Nat. Sustain. 3, 1044–1051 (2020).

    Article  Google Scholar 

  7. Park, N. G., Grätzel, M., Miyasaka, T., Zhu, K. & Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 (2016).

    Article  CAS  ADS  Google Scholar 

  8. Bellinger, D. C. Very low lead exposures and children’s neurodevelopment. Curr. Opin. Pediatr. 20, 172–177 (2008).

    Article  PubMed  Google Scholar 

  9. Acharya, S. Lead between the lines. Nat. Chem. 5, 894–894 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Van de Wiele, T. R. et al. Comparison of five in vitro digestion models to in vivo experimental results: lead bioaccessibility in the human gastrointestinal tract. J. Environ. Sci. Health A 42, 1203–1211 (2007).

    Article  Google Scholar 

  11. Pourrut, B., Shahid, M., Dumat, C., Winterton, P. & Pinelli, E. Lead uptake, toxicity, and detoxification in plants. Rev. Environ. Contam. Toxicol. 213, 113–136 (2011).

    CAS  PubMed  Google Scholar 

  12. Fabini, D. Quantifying the potential for lead pollution from halide perovskite photovoltaics. J. Phys. Chem. Lett. 6, 3546–3548 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Heo, Y. J. et al. Enhancing performance and stability of tin halide perovskite light emitting diodes via coordination engineering of Lewis acid–base adducts. Adv. Funct. Mater. 31, 2106974 (2021).

    Article  CAS  Google Scholar 

  14. Awais, M., Kirsch, R. L., Yeddu, V. & Saidaminov, M. I. Tin halide perovskites going forward: Frost diagrams offer hints. ACS Mater. Lett. 3, 299–307 (2021).

    Article  CAS  Google Scholar 

  15. Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  16. Ke, W. & Kanatzidis, M. G. Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10, 965 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  17. Xiao, Z., Meng, W., Wang, J., Mitzi, D. B. & Yan, Y. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater. Horiz. 4, 206–216 (2017).

    Article  Google Scholar 

  18. Lyu, M. Q. et al. Organic–inorganic bismuth (III)-based material: a lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 9, 692–702 (2016).

    Article  CAS  Google Scholar 

  19. Xiao, Z., Song, Z. & Yan, Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31, 1803792 (2019).

    Article  CAS  Google Scholar 

  20. Yin, W.-J., Shi, T. & Yan, Y. Superior photovoltaic properties of lead halide perovskites: insights from first-principles theory. J. Phys. Chem. C 119, 5253–5264 (2015).

    Article  CAS  Google Scholar 

  21. Lee, J.-W., Tan, S., Seok, S. I., Yang, Y. & Park, N.-G. Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  23. Huang, J., Yuan, Y., Shao, Y. & Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017).

    Article  CAS  ADS  Google Scholar 

  24. Vidal, R. et al. Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nat. Sustain. 4, 277–285 (2021).

    Article  Google Scholar 

  25. Ren, M., Qian, X., Chen, Y., Wang, T. & Zhao, Y. Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. J. Hazard. Mater. 426, 127848 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Tian, X., Stranks, S. D. & You, F. Life cycle assessment of recycling strategies for perovskite photovoltaic modules. Nat. Sustain. 4, 821–829 (2021).

    Article  Google Scholar 

  27. Alberola-Borras, J. A. et al. Perovskite photovoltaic modules: life cycle assessment of pre-industrial production process. iScience 9, 542–551 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Jin, X. et al. Mitigating potential lead leakage risk of perovskite solar cells by device architecture engineering from exterior to interior. ACS Energy Lett. 7, 3618–3636 (2022).

    Article  CAS  Google Scholar 

  29. Wu, P., Wang, S., Li, X. & Zhang, F. Beyond efficiency fever: preventing lead leakage for perovskite solar cells. Matter 5, 1137–1161 (2022).

    Article  Google Scholar 

  30. Zhang, H. & Park, N.-G. Towards sustainability with self-healing and recyclable perovskite solar cells. eScience 2, 567–572 (2022).

    Article  Google Scholar 

  31. Li, J. et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 11, 310 (2020).This work investigated the bioavailability of leaked lead from PSCs and its impact on the growth of plants.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  32. Billen, P. et al. Comparative evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics. Energy 166, 1089–1096 (2019).

    Article  CAS  Google Scholar 

  33. Hailegnaw, B., Kirmayer, S., Edri, E., Hodes, G. & Cahen, D. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543–1547 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, J. et al. Polyacrylic acid grafted carbon nanotubes for immobilization of lead(II) in perovskite solar cell. ACS Energy Lett. 7, 1577–1585 (2022).This study reported an efficient lead-immobilization method by taking advantage of high-specific-surface-area and self-aggregation properties of CNTs.

    Article  CAS  Google Scholar 

  35. Liang, Y. et al. Lead leakage preventable fullerene-porphyrin dyad for efficient and stable perovskite solar cells. Adv. Funct. Mater. 32, 2110139 (2021).

    Article  Google Scholar 

  36. Cao, Q. et al. Environmental-friendly polymer for efficient and stable inverted perovskite solar cells with mitigating lead leakage. Adv. Funct. Mater. 32, 2201036 (2022).

    Article  CAS  Google Scholar 

  37. Hu, Y. et al. A holistic sunscreen interface strategy to effectively improve the performance of perovskite solar cells and prevent lead leakage. Chem. Eng. J. 433, 134566 (2022).

    Article  CAS  Google Scholar 

  38. Zhang, H. et al. Multimodal host–guest complexation for efficient and stable perovskite photovoltaics. Nat. Commun. 12, 3383 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Meng, X. et al. A biomimetic self-shield interface for flexible perovskite solar cells with negligible lead leakage. Adv. Funct. Mater. 31, 2106460 (2021).

    Article  CAS  Google Scholar 

  40. Wei, X. et al. Avoiding structural collapse to reduce lead leakage in perovskite photovoltaics. Angew. Chem. Int. Ed. 61, e202204314 (2022).In this work, the lead leaking from PSCs was effectively suppressed by constructing a robust 2D perovskite structure on top of a 3D perovskite surface.

    Article  CAS  Google Scholar 

  41. Niu, B. et al. Mitigating the lead leakage of high-performance perovskite solar cells via in situ polymerized networks. ACS Energy Lett. 6, 3443–3449 (2021).This study constructed a perovskite/polymer matrix within the perovskite films by means of in situ polymerization of acrylamide, which can form hydrogels when exposed to water and hence prevent lead leakage.

    Article  CAS  Google Scholar 

  42. Zhu, X. et al. Photoinduced cross linkable polymerization of flexible perovskite solar cells and modules by incorporating benzyl acrylate. Adv. Funct. Mater. 32, 2202408 (2022).

    Article  CAS  Google Scholar 

  43. Zhang, H. et al. Design of superhydrophobic surfaces for stable perovskite solar cells with reducing lead leakage. Adv. Energy Mater. 11, 2102281 (2021).This work reported a strategy to suppress lead leakage from PSCs by depositing superhydrophobic molecules on top of a perovskite layer.

    Article  CAS  Google Scholar 

  44. Bai, Y. et al. Oligomeric silica-wrapped perovskites enable synchronous defect passivation and grain stabilization for efficient and stable perovskite photovoltaics. ACS Energy Lett. 4, 1231–1240 (2019).

    Article  CAS  Google Scholar 

  45. Liu, T. et al. Stable formamidinium-based perovskite solar cells via in situ grain encapsulation. Adv. Energy Mater. 8, 1800232 (2018).

    Article  Google Scholar 

  46. Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Jana, A. & Kim, K. S. Water-stable, fluorescent organic inorganic hybrid and fully inorganic perovskites. ACS Energy Lett. 3, 2120–2126 (2018).

    Article  CAS  Google Scholar 

  48. Zhang, Y. et al. Water-repellent perovskites induced by a blend of organic halide salts for efficient and stable solar cells. ACS Appl. Mater. Interfaces 13, 33172–33181 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).

    Article  CAS  ADS  Google Scholar 

  50. Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Li, X. et al. In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nat. Commun. 9, 3806 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  52. Chen, S. et al. Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins. Nat. Energy 5, 1003–1011 (2020).This study reported a method to trap lead in PSCs by integrating mesoporous cation-exchange resins with excellent selectivity of lead ions into carbon electrodes.

    Article  ADS  Google Scholar 

  53. Chen, S. et al. Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells. Nat. Sustain. 4, 636–643 (2021).This work implemented a lead-adsorbing scaffold in PSCs, which is more effective in suppressing lead leakage than the device with the coating at the exterior of a glass surface.

    Article  Google Scholar 

  54. Li, X. et al. On-device lead sequestration for perovskite solar cells. Nature 578, 555–558 (2020).In this study, lead-absorbing materials with suitable transparency and lead-chelating activity at various temperatures were applied at both the front and back sides of the device stack to prevent lead leakage in a wide range of temperature conditions.

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Xiao, X. et al. Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe perovskite modules. Sci. Adv. 7, eabi8249 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Li, Z. et al. Sulfonated graphene aerogels enable safe-to-use flexible perovskite solar modules. Adv. Energy Mater. 12, 2103236 (2021).

    Article  Google Scholar 

  57. Huckaba, A. J. et al. Lead sequestration from perovskite solar cells using a metal–organic framework polymer composite. Energy Technol. 8, 2000239 (2020).

    Article  CAS  Google Scholar 

  58. Douay, F. et al. Assessment of potential health risk for inhabitants living near a former lead smelter. Part 1: metal concentrations in soils, agricultural crops, and homegrown vegetables. Environ. Monit. Assess. 185, 3665–3680 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Edwards, M. Fetal death and reduced birth rates associated with exposure to lead-contaminated drinking water. Environ. Sci. Technol. 48, 739–746 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Chandran, L. & Cataldo, R. Lead poisoning: basics and new developments. Pediatr. Rev. 31, 399–406 (2010).

    Article  PubMed  Google Scholar 

  61. Canfield, R. L. et al. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. New Engl. J. Med. 348, 1517–1526 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Barbosa, F., Tanus-Santos, J. E., Gerlach, R. F. & Parsons, P. J. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ. Health Perspect. 113, 1669–1674 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. World Health Organization (WHO). Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. WHO https://www.who.int/publications/i/item/9789241549950 (2017).

  64. United States Environmental Protection Agency (EPA). National primary drinking water regulations: proposed lead and copper rule revisions. EPA https://www.epa.gov/dwreginfo/lead-and-copper-rule (2019).

  65. Technology Standards Department of State Bureau of Environmental Protection of China. Environmental quality standard for soils GB 15618-1995. ChineseStandard.net https://www.chinesestandard.net/PDF.aspx/GB15618-1995 (1995).

  66. World Health Organization & Food and Agriculture Organization of the United Nations. Evaluation of certain food additives: fifty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO https://apps.who.int/iris/handle/10665/42601 (2002).

  67. Centers for Disease Control and Prevention (CDC). Recommended actions based on blood lead level. CDC https://www.cdc.gov/nceh/lead/advisory/acclpp/actions-blls.htm (2022).

  68. Hudcova, H., Vymazal, J. & Rozkosny, M. Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res. 14, 104–120 (2019).

    Article  CAS  Google Scholar 

  69. European Commission. Restriction of hazardous substances in electrical and electronic equipment (RoHS). European Commission https://environment.ec.europa.eu/topics/waste-and-recycling/rohs-directive_en (2017).

  70. legislation.gov.uk. Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast) (Text with EEA relevance). legislation.gov.uk https://www.legislation.gov.uk/eudr/2011/65 (2011).

  71. Celik, I. et al. Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. Sol. Energy Mater. Sol. Cells 156, 157–169 (2016).

    Article  CAS  Google Scholar 

  72. Vidal, R., Alberola‐Borràs, J. A., Sánchez‐Pantoja, N. & Mora‐Seró, I. Comparison of perovskite solar cells with other photovoltaics technologies from the point of view of life cycle assessment. Adv. Energy Sustain. Res. 2, 2000088 (2021).

    Article  CAS  Google Scholar 

  73. Davidson, A. J., Binks, S. P. & Gediga, J. Lead industry life cycle studies: environmental impact and life cycle assessment of lead battery and architectural sheet production. Int. J. Life Cycle Assess. 21, 1624–1636 (2016).

    Article  CAS  Google Scholar 

  74. Su, P. et al. Pb-based perovskite solar cells and the underlying pollution behind clean energy: dynamic leaching of toxic substances from discarded perovskite solar cells. J. Phys. Chem. Lett. 11, 2812–2817 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Coon, S. et al. Whole-body lifetime occupational lead exposure and risk of Parkinson’s disease. Environ. Health Perspect. 114, 1872–1876 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Satarug, S., Gobe, G. C., Vesey, D. A. & Phelps, K. R. Cadmium and lead exposure, nephrotoxicity, and mortality. Toxics 8, 86 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, G. et al. An across-species comparison of the sensitivity of different organisms to Pb-based perovskites used in solar cells. Sci. Total Environ. 708, 135134 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  78. Benmessaoud, I. R. et al. Health hazards of methylammonium lead iodide based perovskites: cytotoxicity studies. Toxicol. Res. 5, 407–419 (2016).

    Article  CAS  Google Scholar 

  79. Bae, S. Y. et al. Hazard potential of perovskite solar cell technology for potential implementation of “safe-by-design” approach. Sci. Rep. 9, 4242 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  80. Zhai, Y., Hunting, E. R., Wouterse, M., Peijnenburg, W. J. G. M. & Vijver, M. G. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities. Ecotoxicol. Environ. Saf. 145, 349–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Zhai, Y., Wang, Z., Wang, G., Peijnenburg, W. J. G. M. & Vijver, M. G. The fate and toxicity of Pb-based perovskite nanoparticles on soil bacterial community: impacts of pH, humic acid, and divalent cations. Chemosphere 249, 126564 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  82. World Health Organization (WHO). Evaluation of certain food additives and contaminants: seventy-third [73rd] report of the Joint FAO/WHO Expert Committee on Food Additives. WHO https://apps.who.int/iris/handle/10665/44515 (2011).

  83. Yan, D. et al. Lead leaching of perovskite solar cells in aqueous environments: a quantitative investigation. Sol. RRL 6, 2200332 (2022).

    Article  CAS  Google Scholar 

  84. Ponti, C. et al. Environmental lead exposure from halide perovskites in solar cells. Trends Ecol. Evol. 37, 281–283 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Juarez-Perez, E. J. & Haro, M. Perovskite solar cells take a step forward. Science 368, 1309 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  86. Shi, L. et al. Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 368, eaba2412 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Raja, S. N. et al. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl. Mater. Interfaces 8, 35523–35533 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Wu, J. et al. A simple way to simultaneously release the interface stress and realize the inner encapsulation for highly efficient and stable perovskite solar cells. Adv. Funct. Mater. 29, 1905336 (2019).

    Article  CAS  Google Scholar 

  89. Li, Z. et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 28, 1704288 (2018).

    Article  MathSciNet  Google Scholar 

  90. Ryu, I. et al. In vivo plain X-ray imaging of cancer using perovskite quantum dot scintillators. Adv. Funct. Mater. 31, 2102334 (2021).

    Article  CAS  Google Scholar 

  91. Zhou, W. et al. Charge transfer boosting moisture resistance of seminude perovskite nanocrystals via hierarchical alumina modulation. J. Phys. Chem. Lett. 11, 3159–3165 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, Y. et al. Enhancing efficiency and stability of perovskite solar cells via in situ incorporation of lead sulfide layer. Sustain. Energy Fuels 5, 3700–3704 (2021).

    Article  CAS  Google Scholar 

  93. Guo, Y., Sato, W., Shoyama, K. & Nakamura, E. Sulfamic acid-catalyzed lead perovskite formation for solar cell fabrication on glass or plastic substrates. J. Am. Chem. Soc. 138, 5410–5416 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Hosokawa, H. et al. Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites. Nat. Commun. 10, 43 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  95. Xie, L., Zhang, T. & Zhao, Y. Stabilizing the MAPbI3 perovksite via the in-situ formed lead sulfide layer for efficient and robust solar cells. J. Energy Chem. 47, 62–65 (2020).

    Article  Google Scholar 

  96. Lian, H. et al. Metal halide perovskite quantum dots for amphiprotic bio-imaging. Coordin. Chem. Rev. 452, 214313 (2022).

    Article  CAS  Google Scholar 

  97. Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  98. You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016).

    Article  PubMed  ADS  Google Scholar 

  99. Cao, Q. et al. Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Sci. Adv. 7, eabg0633 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  100. Lv, Y. et al. Low-temperature atomic layer deposition of metal oxide layers for perovskite solar cells with high efficiency and stability under harsh environmental conditions. ACS Appl. Mater. Interfaces 10, 23928–23937 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Kim, Y. R. et al. Inner encapsulating approach for moisture-stable perovskite solar cells. Sol. RRL 5, 2100351 (2021).

    Article  CAS  Google Scholar 

  102. Jiang, Y. et al. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nat. Energy 4, 585–593 (2019).In this study, a self-healable polymer encapsulant was used to prevent lead leakage in case of mechanical damage.

    Article  CAS  ADS  Google Scholar 

  103. Fu, Z. et al. Encapsulation of printable mesoscopic perovskite solar cells enables high temperature and long-term outdoor stability. Adv. Funct. Mater. 29, 1809129 (2019).

    Article  Google Scholar 

  104. Lv, Y., Zhang, H., Liu, R., Sun, Y. & Huang, W. Composite encapsulation enabled superior comprehensive stability of perovskite solar cells. ACS Appl. Mater. Interfaces 12, 27277–27285 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Cheacharoen, R. et al. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018).

    Article  CAS  Google Scholar 

  106. Hirata, M. K., Freitas, J. N., Santos, T. E. A., Mammana, V. P. & Nogueira, A. F. Assembly considerations for dye-sensitized solar modules with polymer gel electrolyte. Ind. Eng. Chem. Res. 55, 10278–10285 (2016).

    Article  CAS  Google Scholar 

  107. Wu, S. et al. 2D metal–organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 15, 934–940 (2020).Herein, the lead leaking from PSCs was properly suppressed by using a lead-chelating metal–organic framework as the charge-transport layer within the device.

    Article  CAS  PubMed  ADS  Google Scholar 

  108. Bi, H. et al. Top‐contacts‐interface engineering for high‐performance perovskite solar cell with reducing lead leakage. Sol. RRL 6, 2200352 (2022).

    Article  CAS  Google Scholar 

  109. Xu, Y. et al. In situ polymer network in perovskite solar cells enabled superior moisture and thermal resistance. J. Phys. Chem. Lett. 13, 3754–3762 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, Y. et al. Tough, stable and self-healing luminescent perovskite-polymer matrix applicable to all harsh aquatic environments. Nat. Commun. 13, 1338 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lu, Y.-B. et al. Light enhanced moisture degradation of perovskite solar cell material CH3NH3PbI3. J. Mater. Chem. A 7, 27469–27474 (2019).

    Article  CAS  Google Scholar 

  113. Zhang, J. et al. Multifunctional molecule engineered SnO2 for perovskite solar cells with high efficiency and reduced lead leakage. Sol. RRL 5, 2100464 (2021).

    Article  CAS  Google Scholar 

  114. Mendez L, R. D., Breen, B. N. & Cahen, D. Lead sequestration from halide perovskite solar cells with a low-cost thiol-containing encapsulant. ACS Appl. Mater. Interfaces 14, 29766–29772 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, J., Kim, G. W., Kim, M., Park, S. A. & Park, T. Nonaromatic green-solvent-processable, dopant-free, and lead-capturable hole transport polymers in perovskite solar cells with high efficiency. Adv. Energy Mater. 10, 1902662 (2020).

    Article  CAS  Google Scholar 

  116. Edwards, M. & McNeill, L. S. Effect of phosphate inhibitors on lead release from pipes. J. Am. Water Works Assoc. 94, 79–90 (2002).

    Article  CAS  Google Scholar 

  117. Yang, Z. et al. Multifunctional phosphorus-containing Lewis acid and base passivation enabling efficient and moisture-stable perovskite solar cells. Adv. Funct. Mater. 30, 1910710 (2020).

    Article  CAS  Google Scholar 

  118. Mokhtar, M. Z. et al. Bioinspired scaffolds that sequester lead ions in physically damaged high efficiency perovskite solar cells. Chem. Commun. 57, 994–997 (2021).

    Article  CAS  Google Scholar 

  119. Horvath, E. et al. Fighting health hazards in lead halide perovskite optoelectronic devices with transparent phosphate salts. ACS Appl. Mater. Interfaces 13, 33995–34002 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. He, Z. et al. Simultaneous chemical crosslinking of SnO2 and perovskite for high‐performance planar perovskite solar cells with minimized lead leakage. Sol. RRL 6, 2200567 (2022).

    Article  CAS  Google Scholar 

  121. Li, Z. et al. An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics. Nano Energy 93, 106853 (2022).

    Article  CAS  Google Scholar 

  122. Luo, H. et al. Sustainable Pb management in perovskite solar cells toward eco‐friendly development. Adv. Energy Mater. 12, 2201242 (2022).

    Article  CAS  Google Scholar 

  123. Dou, J., Bai, Y. & Chen, Q. Challenges of lead leakage in perovskite solar cells. Mater. Chem. Front. 6, 2779–2789 (2022).

    Article  CAS  Google Scholar 

  124. Shahabuddi, S. et al. Kinetic and equilibrium adsorption of lead from water using magnetic metformin-substituted SBA-15. Environ. Sci. Water Res. Technol. 4, 549–558 (2018).

    Article  Google Scholar 

  125. Singh, R. & Bhateria, R. Experimental and modeling process optimization of lead adsorption on magnetite nanoparticles via isothermal, kinetics, and thermodynamic studies. ACS Omega 5, 10826–10837 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Reddy, D. H. K. & Lee, S. M. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv. Colloid Interface Sci. 201, 68–93 (2013).

    Article  PubMed  Google Scholar 

  127. Zhang, H. & Park, N.-G. Strain control to stabilize perovskite solar cells. Angew. Chem. Int. Ed. 61, e202212268 (2022).

    CAS  Google Scholar 

  128. Poll, C. G. et al. Electrochemical recycling of lead from hybrid organic–inorganic perovskites using deep eutectic solvents. Green Chem. 18, 2946–2955 (2016).

    Article  CAS  Google Scholar 

  129. Wang, K. et al. “One-key-reset” recycling of whole perovskite solar cell. Matter 4, 2522–2541 (2021).

    Article  CAS  Google Scholar 

  130. Feng, X. et al. Close-loop recycling of perovskite solar cells through dissolution-recrystallization of perovskite by butylamine. Cell Rep. Phys. Sci. 2, 100341 (2021).

    Article  CAS  Google Scholar 

  131. Kim, B. J. et al. Selective dissolution of halide perovskites as a step towards recycling solar cells. Nat. Commun. 7, 11735 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  132. Chen, B. et al. Recycling lead and transparent conductors from perovskite solar modules. Nat. Commun. 12, 5859 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  133. Liu, F. et al. Recycling and recovery of perovskite solar cells. Mater. Today 43, 185–197 (2021).

    Article  CAS  Google Scholar 

  134. Clementi, E., Raimondi, D. L. & Reinhardt, W. P. Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons. J. Chem. Phys. 47, 1300–1307 (1967).

    Article  CAS  ADS  Google Scholar 

  135. Kim, J. Y., Lee, J. W., Jung, H. S., Shin, H. & Park, N. G. High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Lee, J. W. & Park, N. G. Chemical approaches for stabilizing perovskite solar cells. Adv. Energy Mater. 10, 1903249 (2020).

    Article  CAS  ADS  Google Scholar 

  137. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. & Sutton, D. J. in Molecular, Clinical and Environmental Toxicology. Experientia Supplementum Vol. 101, 133–164 (Springer, 2012).

  138. Stoumpos, C. C. et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Enghag, P. Encyclopedia of the Elements: Technical Data - History - Processing - Applications (Wiley, 2008).

  140. Krishnamoorthy, T. et al. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3, 23829–23832 (2015).

    Article  CAS  Google Scholar 

  141. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT (MSIT) of Korea under contract NRF-2021R1A3B1076723 (Research Leader Program), the National Key & Program of China (grant no. 2020YFA07099003) and the Young Scientist Exchange Program between the Republic of Korea and the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Contributions

N.-G.P. and H.Z. conceived the idea for the study. H.Z. wrote the first draft. J.-W.L., R.H., A.A. and M.G. contributed to the writing. N.-G.P. edited the manuscript. All authors commented on the manuscript. H.Z., J.-W.L., A.A. and N.-G.P. contributed to the preparation of the figures.

Corresponding authors

Correspondence to Antonio Abate, Michael Grätzel or Nam-Gyu Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Chang-Zhi Li, Rosario Vidal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Lee, JW., Nasti, G. et al. Lead immobilization for environmentally sustainable perovskite solar cells. Nature 617, 687–695 (2023). https://doi.org/10.1038/s41586-023-05938-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05938-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing