Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translating eco-evolutionary biology into therapy to tackle antibiotic resistance

Abstract

Antibiotic resistance is currently one of the most important public health problems. The golden age of antibiotic discovery ended decades ago, and new approaches are urgently needed. Therefore, preserving the efficacy of the antibiotics currently in use and developing compounds and strategies that specifically target antibiotic-resistant pathogens is critical. The identification of robust trends of antibiotic resistance evolution and of its associated trade-offs, such as collateral sensitivity or fitness costs, is invaluable for the design of rational evolution-based, ecology-based treatment approaches. In this Review, we discuss these evolutionary trade-offs and how such knowledge can aid in informing combination or alternating antibiotic therapies against bacterial infections. In addition, we discuss how targeting bacterial metabolism can enhance drug activity and impair antibiotic resistance evolution. Finally, we explore how an improved understanding of the original physiological function of antibiotic resistance determinants, which have evolved to reach clinical resistance after a process of historical contingency, may help to tackle antibiotic resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Natural selection and random drift in the evolution of antibiotic resistance.
Fig. 2: Exploitable trade-offs of antibiotic resistance evolution.
Fig. 3: Methodologies to detect robust evolutionary trade-offs associated with antibiotic resistance and therapeutic strategies based on these robust patterns.
Fig. 4: Examples of bacterial metabolic changes that impair antimicrobial resistance.
Fig. 5: Interfering with the activity of efflux pumps to impair bacterial virulence.

Similar content being viewed by others

References

  1. Baquero, F. et al. Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev. 34, e0005019 (2021).

    CAS  PubMed  Google Scholar 

  2. Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science https://doi.org/10.1126/science.aam5979 (2018).

    Article  PubMed  Google Scholar 

  3. Hernando-Amado, S., Coque, T. M., Baquero, F. & Martinez, J. L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).

    CAS  PubMed  Google Scholar 

  4. Pinheiro, F., Warsi, O., Andersson, D. I. & Lässig, M. Metabolic fitness landscapes predict the evolution of antibiotic resistance. Nat. Ecol. Evol. 5, 677–687 (2021).

    PubMed  Google Scholar 

  5. Pal, C., Papp, B. & Lazar, V. Collateral sensitivity of antibiotic-resistant microbes. Trends Microbiol. 23, 401–407 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Imamovic, L. & Sommer, M. O. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl Med. 5, 204ra132 (2013). This is one of the most thorough studies on collateral sensitivity networks in response to a large set of antibiotics.

    PubMed  Google Scholar 

  7. Herencias, C. et al. Collateral sensitivity associated with antibiotic resistance plasmids. eLife https://doi.org/10.7554/eLife.65130 (2021). This article provides seminal information on collateral sensitivity associated with the acquisition of mobile antibiotic resistance genes.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Nichol, D. et al. Antibiotic collateral sensitivity is contingent on the repeatability of evolution. Nat. Commun. 10, 334 (2019).

    PubMed Central  PubMed  Google Scholar 

  9. Roemhild, R. & Andersson, D. I. Mechanisms and therapeutic potential of collateral sensitivity to antibiotics. PLoS Pathog. 17, e1009172 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Allison, K. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011). This article shows how priming bacterial metabolism may help to eliminate bacterial persisters by using antibiotics to which they did not respond.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Baquero, F. & Martinez, J. L. Interventions on metabolism: making antibiotic-susceptible bacteria. MBio https://doi.org/10.1128/mBio.01950-17 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  12. Laborda, P., Alcalde-Rico, M., Chini, A., Martinez, J. L. & Hernando-Amado, S. Discovery of inhibitors of Pseudomonas aeruginosa virulence through the search for natural-like compounds with a dual role as inducers and substrates of efflux pumps. Env. Microbiol. https://doi.org/10.1111/1462-2920.15511 (2021).

    Article  Google Scholar 

  13. Knoppel, A., Nasvall, J. & Andersson, D. I. Evolution of antibiotic resistance without antibiotic exposure. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.01495-17 (2017). This article shows that bacterial populations can acquire antibiotic resistance even in the absence of antibiotic selective pressure.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Baquero, F. Causality in biological transmission: forces and energies. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MTBP-0018-2016 (2018).

    Article  PubMed  Google Scholar 

  15. Laxminarayan, R. Antibiotic effectiveness: balancing conservation against innovation. Science 345, 1299–1301 (2014).

    CAS  PubMed  Google Scholar 

  16. Szybalski, W. & Bryson, V. Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J. Bacteriol. 64, 489–499 (1952).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Podnecky, N. L. et al. Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli. Nat. Commun. 9, 3673 (2018). This article reports a wide study on the conservation of collateral sensitivity among a diverse set of clinical E. coli isolates.

    PubMed Central  PubMed  Google Scholar 

  18. Roemhild, R., Bollenbach, T. & Andersson, D. I. The physiology and genetics of bacterial responses to antibiotic combinations. Nat. Rev. Microbiol. 20, 478–490 (2022).

    CAS  PubMed  Google Scholar 

  19. Lázár, V. et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat. Microbiol. 3, 718–731 (2018).

    PubMed Central  PubMed  Google Scholar 

  20. Barbosa, C., Beardmore, R., Schulenburg, H. & Jansen, G. Antibiotic combination efficacy (ACE) networks for a Pseudomonas aeruginosa model. PLoS Biol. 16, e2004356 (2018).

    PubMed Central  PubMed  Google Scholar 

  21. Munck, C., Gumpert, H. K., Wallin, A. I., Wang, H. H. & Sommer, M. O. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl Med. 6, 262ra156 (2014).

    PubMed Central  PubMed  Google Scholar 

  22. Jahn, L. J. et al. Compatibility of evolutionary responses to constituent antibiotics drive resistance evolution to drug pairs. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msab006 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  23. Imamovic, L. et al. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell 172, 121–134.e14 (2018). This article shows that phenotypic convergence displayed by different mutants can drive collateral sensitivity-based therapeutic strategies.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Kim, S., Lieberman, T. D. & Kishony, R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl Acad. Sci. USA 111, 14494–14499 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Barbosa, C., Romhild, R., Rosenstiel, P. & Schulenburg, H. Evolutionary stability of collateral sensitivity to antibiotics in the model pathogen Pseudomonas aeruginosa. eLife https://doi.org/10.7554/eLife.51481 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  26. Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351, aad3292 (2016).

    PubMed Central  PubMed  Google Scholar 

  27. Barbosa, C. et al. Alternative evolutionary paths to bacterial antibiotic resistance cause distinct collateral effects. Mol. Biol. Evol. 34, 2229–2244 (2017). This article shows that replicate populations of the same bacterial strain can present different evolutionary pathways in the presence of antibiotics and substantial variations in collateral sensitivity.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Lazar, V. et al. Bacterial evolution of antibiotic hypersensitivity. Mol. Syst. Biol. 9, 700 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Lazar, V. et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat. Commun. 5, 4352 (2014).

    CAS  PubMed  Google Scholar 

  30. Sørum, V. et al. Evolutionary instability of collateral susceptibility networks in ciprofloxacin-resistant clinical Escherichia coli strains. mBio 13, e0044122 (2022).

    PubMed  Google Scholar 

  31. Hernando-Amado, S., Sanz-García, F. & Martínez, J. L. Antibiotic resistance evolution is contingent on the quorum-sensing response in Pseudomonas aeruginosa. Mol. Biol. Evol. 36, 2238–2251 (2019).

    CAS  PubMed  Google Scholar 

  32. Vogwill, T., Kojadinovic, M. & MacLean, R. C. Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2016.0151 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  33. Card, K. J., Thomas, M. D., Graves, J. L. Jr, Barrick, J. E. & Lenski, R. E. Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2016886118 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gambello, M. J. & Iglewski, B. H. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173, 3000–3009 (1991).

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Liakopoulos, A. et al. Allele-specific collateral and fitness effects determine the dynamics of fluoroquinolone resistance evolution. Proc. Natl Acad. Sci. USA 119, e2121768119 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Beckley, A. M. & Wright, E. S. Identification of antibiotic pairs that evade concurrent resistance via a retrospective analysis of antimicrobial susceptibility test results. Lancet Microbe 2, e545–e554 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Ma, Y. & Chua, S. L. No collateral antibiotic sensitivity by alternating antibiotic pairs. Lancet Microbe 3, e7 (2022).

    CAS  PubMed  Google Scholar 

  38. Lopez-Causape, C., Cabot, G., Del Barrio-Tofino, E. & Oliver, A. The versatile mutational resistome of Pseudomonas aeruginosa. Front. Microbiol. 9, 685 (2018).

    PubMed Central  PubMed  Google Scholar 

  39. Hernando-Amado, S., Sanz-García, F. & Martínez, J. L. Rapid and robust evolution of collateral sensitivity in Pseudomonas aeruginosa antibiotic-resistant mutants. Sci. Adv. 6, eaba5493 (2020). This analysis of a set of antibiotic-resistant mutants of P. aeruginosa PA14 enables the identification of robust collateral sensitivity patterns associated with the use of ciprofloxacin.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Hernando-Amado, S., Laborda, P., Valverde José, R. & Martínez José, L. Mutational background influences P. aeruginosa ciprofloxacin resistance evolution but preserves collateral sensitivity robustness. Proc. Natl Acad. Sci. USA 119, e2109370119 (2022).

    PubMed Central  PubMed  Google Scholar 

  41. Hernando-Amado, S. et al. Rapid phenotypic convergence towards collateral sensitivity in clinical isolates of Pseudomonas aeruginosa presenting different genomic backgrounds. Microbiol. Spectr. 11, e0227622 (2022). This study shows that robust collateral sensitivity patterns associated with the use of ciprofloxacin emerge in clinical strains of P. aeruginosa having different genomic backgrounds and mutational resistomes.

    PubMed  Google Scholar 

  42. Laborda, P., Martinez, J. L. & Hernando-Amado, S. Convergent phenotypic evolution towards fosfomycin collateral sensitivity of Pseudomonas aeruginosa antibiotic-resistant mutants. Microb. Biotechnol. https://doi.org/10.1111/1751-7915.13817 (2021). This article shows that different resistant mutants, selected by different antibiotics, present convergent collateral sensitivity to fosfomycin.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Roemhild, R., Linkevicius, M. & Andersson, D. I. Molecular mechanisms of collateral sensitivity to the antibiotic nitrofurantoin. PLoS Biol. 18, e3000612 (2020).

    PubMed Central  PubMed  Google Scholar 

  44. Laborda, P., Martínez, J. L. & Hernando-Amado, S. Evolution of habitat-dependent antibiotic resistance in Pseudomonas aeruginosa. Microbiol. Spectr. 10, e0024722 (2022).

    PubMed  Google Scholar 

  45. Allen, R. C., Pfrunder-Cardozo, K. R. & Hall, A. R. Collateral sensitivity interactions between antibiotics depend on local abiotic conditions. mSystems 6, e0105521 (2021).

    PubMed  Google Scholar 

  46. Rodriguez de Evgrafov, M. C., Faza, M., Asimakopoulos, K. & Sommer, M. O. A. Systematic investigation of resistance evolution to common antibiotics reveals conserved collateral responses across common human pathogens. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.01273-20 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  47. Apjok, G. et al. Limited evolutionary conservation of the phenotypic effects of antibiotic resistance mutations. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msz109 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  48. Hernando-Amado, S., Laborda, P. & Martínez, J. L. Tackling antibiotic resistance by inducing transient and robust collateral sensitivity. Nat. Commun. 14, 1723 (2023). This article shows that transient antibiotic resistance is associated with robust collateral sensitivity. Therefore, this trade-off can be exploited without the need to select antibiotic-resistant mutants.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. van Duijn, P. J. et al. The effects of antibiotic cycling and mixing on antibiotic resistance in intensive care units: a cluster-randomised crossover trial. Lancet Infect. Dis. 18, 401–409 (2018).

    PubMed  Google Scholar 

  50. Freihofer, P. et al. Nonmutational compensation of the fitness cost of antibiotic resistance in mycobacteria by overexpression of tlyA rRNA methylase. RNA 22, 1836–1843 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Shcherbakov, D. et al. Directed mutagenesis of Mycobacterium smegmatis 16S rRNA to reconstruct the in-vivo evolution of aminoglycoside resistance in Mycobacterium tuberculosis. Mol. Microbiol. 77, 830–840 (2010).

    CAS  PubMed  Google Scholar 

  52. Durão, P., Trindade, S., Sousa, A. & Gordo, I. Multiple resistance at no cost: rifampicin and streptomycin a dangerous liaison in the spread of antibiotic resistance. Mol. Biol. Evol. 32, 2675–2680 (2015).

    PubMed Central  PubMed  Google Scholar 

  53. Olivares Pacheco, J., Alvarez-Ortega, C., Alcalde Rico, M. & Martinez, J. L. Metabolic compensation of fitness costs is a general outcome for antibiotic-resistant Pseudomonas aeruginosa mutants overexpressing efflux pumps. mBio 8, https://doi.org/10.1128/mBio.00500-17 (2017). This article provides evidence that fitness costs associated with the acquisition of resistance can be compensated for by metabolic rewiring.

  54. Baquero, F. et al. Allogenous selection of mutational collateral resistance: old drugs select for new resistance within antibiotic families. Front. Microbiol. 12, 757833 (2021).

    PubMed Central  PubMed  Google Scholar 

  55. Nichol, D., Bonomo, R. A. & Scott, J. G. It’s too soon to pull the plug on antibiotic cycling. Lancet Infect. Dis. 18, 493 (2018). This article asserts that empirical evidence is not sufficient to validate the effectiveness of antibiotic cycling in reducing antibiotic resistance.

    PubMed  Google Scholar 

  56. Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).

    CAS  PubMed  Google Scholar 

  57. Dunai, A. et al. Rapid decline of bacterial drug-resistance in an antibiotic-free environment through phenotypic reversion. eLife https://doi.org/10.7554/eLife.47088 (2019). This article shows that decline of antibiotic resistance in the absence of selection is drug specific.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Hernando-Amado, S., Laborda, P., Valverde, J. R. & Martínez, J. L. Rapid decline of ceftazidime resistance in antibiotic-free and sublethal environments is contingent on genetic background. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msac049 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  59. Trindade, S. et al. Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet. 5, e1000578 (2009).

    PubMed Central  PubMed  Google Scholar 

  60. Ward, H., Perron, G. G. & Maclean, R. C. The cost of multiple drug resistance in Pseudomonas aeruginosa. J. Evol. Biol. 22, 997–1003 (2009).

    CAS  PubMed  Google Scholar 

  61. Salverda, M. L. et al. Initial mutations direct alternative pathways of protein evolution. PLoS Genet. 7, e1001321 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Lopatkin, A. J. et al. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science https://doi.org/10.1126/science.aba0862 (2021). This article shows that the mutation of metabolic genes may confer antibiotic resistance, providing a linkage between metabolism and resistance to antimicrobials.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Gil-Gil, T. & Martínez, J. L. Fosfomycin resistance evolutionary pathways of Stenotrophomonas maltophilia in different growing conditions. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23031132 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  64. Gil-Gil, T., Corona, F., Martinez, J. L. & Bernardini, A. The inactivation of enzymes belonging to the central carbon metabolism is a novel mechanism of developing antibiotic resistance. mSystems https://doi.org/10.1128/mSystems.00282-20 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  65. Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017). This study shows that growth under glycolytic or gluconeogenic conditions modifies antibiotic resistance trajectories. The acquisition of resistance modifies bacterial metabolism, rendering weaknesses in resistant strains.

    PubMed Central  PubMed  Google Scholar 

  66. Shewaramani, S. et al. Anaerobically grown Escherichia coli has an enhanced mutation rate and distinct mutational spectra. PLoS Genet. 13, e1006570 (2017).

    PubMed Central  PubMed  Google Scholar 

  67. Su, Y. B., Kuang, S. F., Peng, X. X. & Li, H. The depressed P cycle contributes to the acquisition of ampicillin resistance in Edwardsiella piscicida. J. Proteom. 212, 103562 (2020).

    CAS  Google Scholar 

  68. Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019).

    CAS  PubMed  Google Scholar 

  70. Bjorkman, J., Nagaev, I., Berg, O. G., Hughes, D. & Andersson, D. I. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287, 1479–1482 (2000). This seminal work shows that fitness cost associated with antibiotic resistance is not merely a non-specific growth defect and that this cost, and the mutations compensating for it, are environment specific.

    CAS  PubMed  Google Scholar 

  71. Scortti, M. et al. Coexpression of virulence and fosfomycin susceptibility in Listeria: molecular basis of an antimicrobial in vitro–in vivo paradox. Nat. Med. 12, 515–517 (2006).

    CAS  PubMed  Google Scholar 

  72. Baquero, F., Lanza, V. F., Baquero, M. R., Del Campo, R. & Bravo-Vázquez, D. A. Microcins in Enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere. Front. Microbiol. 10, 2261 (2019).

    PubMed Central  PubMed  Google Scholar 

  73. Wayne, L. G. & Sramek, H. A. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 38, 2054–2058 (1994).

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Lin, P. L. et al. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc. Natl Acad. Sci. USA 109, 14188–14193 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Chung, W. Y. et al. Exogenous metabolite feeding on altering antibiotic susceptibility in Gram-negative bacteria through metabolic modulation: a review. Metabolomics 18, 47 (2022).

    CAS  PubMed  Google Scholar 

  76. Fortuin, S. & Soares, N. C. The integration of proteomics and metabolomics data paving the way for a better understanding of the mechanisms underlying microbial acquired drug resistance. Front. Med. 9, 849838 (2022).

    Google Scholar 

  77. Gardner, S. G., Marshall, D. D., Daum, R. S., Powers, R. & Somerville, G. A. Metabolic mitigation of Staphylococcus aureus vancomycin intermediate-level susceptibility. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01608-17 (2018).

    Article  PubMed  Google Scholar 

  78. Zhao, X. L. et al. Glutamine promotes antibiotic uptake to kill multidrug-resistant uropathogenic bacteria. Sci. Transl Med. 13, eabj0716 (2021).

    CAS  PubMed  Google Scholar 

  79. Grézal, G. et al. Plasticity and stereotypic rewiring of the transcriptome upon bacterial evolution of antibiotic resistance. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msad020 (2023). This study shows that antibiotic-resistant E. coli mutants selected by different antibiotics display convergent transcriptomic changes, possibly through convergent regulatory rewiring of the multidrug transport system, which renders increased susceptibility to antimicrobial peptides.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Su, Y. B. et al. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc. Natl Acad. Sci. USA 115, E1578–E1587 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Arrieta-Ortiz, M. L. et al. Disrupting the ArcA regulatory network amplifies the fitness cost of tetracycline resistance in Escherichia coli. mSystems, 8, e0090422 (2022). This study shows how understanding metabolic changes associated with the acquisition of antibiotic resistance may enable the identification of a compound that hampers antibiotic resistance.

    PubMed  Google Scholar 

  82. Vestergaard, M. et al. Inhibition of the ATP synthase eliminates the intrinsic resistance of Staphylococcus aureus towards polymyxins. mBio https://doi.org/10.1128/mBio.01114-17 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  83. Kim, H. J. et al. Pharmacological perturbation of thiamine metabolism sensitizes Pseudomonas aeruginosa to multiple antibacterial agents. Cell Chem. Biol. 29, 1317–1324.e5 (2022).

    CAS  PubMed  Google Scholar 

  84. Jiang, M. et al. Na+-NQR confers aminoglycoside resistance via the regulation of l-alanine metabolism. mBio https://doi.org/10.1128/mBio.02086-20 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  85. Ye, J. Z. et al. Identification and efficacy of glycine, serine and threonine metabolism in potentiating kanamycin-mediated killing of Edwardsiella piscicida. J. Proteom. 183, 34–44 (2018).

    CAS  Google Scholar 

  86. Peng, B. et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab. 21, 249–262 (2015).

    CAS  PubMed  Google Scholar 

  87. Campbell, C. et al. Accumulation of succinyl coenzyme a perturbs the methicillin-resistant Staphylococcus aureus (MRSA) succinylome and is associated with increased susceptibility to beta-lactam antibiotics. mBio 12, e0053021 (2021).

    PubMed  Google Scholar 

  88. Furniss, R. C. D. et al. Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding. eLife https://doi.org/10.7554/eLife.57974 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  89. Linares, J. F. et al. The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Env. Microbiol. 12, 3196–3212 (2010).

    CAS  Google Scholar 

  90. Zhu, Y. et al. Genome-scale metabolic modeling of responses to polymyxins in Pseudomonas aeruginosa. GigaScience https://doi.org/10.1093/gigascience/giy021 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  91. Heinemann, M., Kummel, A., Ruinatscha, R. & Panke, S. In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol. Bioeng. 92, 850–864 (2005). This seminal work shows how the study of metabolic networks may provide information about the mechanisms of antibiotic resistance.

    CAS  PubMed  Google Scholar 

  92. Rêgo, A. M. et al. Metabolic profiles of multidrug resistant and extensively drug resistant Mycobacterium tuberculosis unveiled by metabolomics. Tuberculosis 126, 102043 (2020).

    PubMed  Google Scholar 

  93. Zampieri, M., Zimmermann, M., Claassen, M. & Sauer, U. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. Cell Rep. 19, 1214–1228 (2017).

    CAS  PubMed  Google Scholar 

  94. Martinez, J. L. et al. A global view of antibiotic resistance. FEMS Microbiol. Rev. 33, 44–65 (2009).

    CAS  PubMed  Google Scholar 

  95. Sanz-García, F. et al. Coming from the wild: multidrug resistant opportunistic pathogens presenting a primary, not human-linked, environmental habitat. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22158080 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  96. Fajardo, A. et al. The neglected intrinsic resistome of bacterial pathogens. PLoS ONE 3, e1619 (2008).

    PubMed Central  PubMed  Google Scholar 

  97. Martinez, J. L. Antibiotics and antibiotic resistance genes in natural environments. Science 321, 365–367 (2008).

    CAS  PubMed  Google Scholar 

  98. Payie, K. G. & Clarke, A. J. Characterization of gentamicin 2′-N-acetyltransferase from Providencia stuartii: its use of peptidoglycan metabolites for acetylation of both aminoglycosides and peptidoglycan. J. Bacteriol. 179, 4106–4114 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Henderson, T. A., Young, K. D., Denome, S. A. & Elf, P. K. AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. J. Bacteriol. 179, 6112–6121 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Santos, J. M., Lobo, M., Matos, A. P., De Pedro, M. A. & Arraiano, C. M. The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol. Microbiol. 45, 1729–1740 (2002).

    CAS  PubMed  Google Scholar 

  101. Torrens, G. et al. Regulation of AmpC-driven β-lactam resistance in Pseudomonas aeruginosa: different pathways, different signaling. mSystems https://doi.org/10.1128/mSystems.00524-19 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  102. Bernat, B. A., Laughlin, L. T. & Armstrong, R. N. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry 36, 3050–3055 (1997).

    CAS  PubMed  Google Scholar 

  103. Allocati, N., Federici, L., Masulli, M. & Di Ilio, C. Glutathione transferases in bacteria. FEBS J. 276, 58–75 (2009).

    CAS  PubMed  Google Scholar 

  104. Kim, H. B., Park, C. H., Gavin, M., Jacoby, G. A. & Hooper, D. C. Cold shock induces qnrA expression in Shewanella algae. Antimicrob. Agents Chemother. 55, 414–416 (2011).

    CAS  PubMed  Google Scholar 

  105. Blanco, P. et al. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms https://doi.org/10.3390/microorganisms4010014 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  106. Vargas, P. et al. Plant flavonoids target Pseudomonas syringae pv. tomato DC3000 flagella and type III secretion system. Environ. Microbiol. Rep. 5, 841–850 (2013).

    CAS  PubMed  Google Scholar 

  107. Garcia-Leon, G. et al. A function of SmeDEF, the major quinolone resistance determinant of Stenotrophomonas maltophilia, is the colonization of plant roots. Appl. Environ. Microbiol. 80, 4559–4565 (2014).

    PubMed Central  PubMed  Google Scholar 

  108. Lyu, M. et al. Structural basis of peptide-based antimicrobial inhibition of a resistance-nodulation-cell division multidrug efflux pump. Microbiol. Spectr. 10, e0299022 (2022).

    PubMed  Google Scholar 

  109. Sanz-Garcia, F. et al. Mycobacterial aminoglycoside acetyltransferases: a little of drug resistance, and a lot of other roles. Front. Microbiol. 10, 46 (2019).

    PubMed Central  PubMed  Google Scholar 

  110. Duan, L., Yi, M., Chen, J., Li, S. & Chen, W. Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3. Biochem. Biophys. Res. Commun. 473, 1229–1234 (2016).

    CAS  PubMed  Google Scholar 

  111. Li, Y., Green, K. D., Johnson, B. R. & Garneau-Tsodikova, S. Inhibition of aminoglycoside acetyltransferase resistance enzymes by metal salts. Antimicrob. Agents Chemother. 59, 4148–4156 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Hitch, T. C. A. et al. Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME Commun. 1, 16 (2021).

    PubMed Central  PubMed  Google Scholar 

  113. Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37, 186–192 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Neville, B. A., Forster, S. C. & Lawley, T. D. Commensal Koch’s postulates: establishing causation in human microbiota research. Curr. Opin. Microbiol. 42, 47–52 (2018).

    PubMed  Google Scholar 

  115. Feehan, A. & Garcia-Diaz, J. Bacterial, gut microbiome-modifying therapies to defend against multidrug resistant organisms. Microorganisms https://doi.org/10.3390/microorganisms8020166 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  116. Huddleston, J. R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect. Drug Resist. 7, 167–176 (2014).

    PubMed Central  PubMed  Google Scholar 

  117. Hyun, J. et al. Faecal microbiota transplantation reduces amounts of antibiotic resistance genes in patients with multidrug-resistant organisms. Antimicrob. Resist. Infect. Control. 11, 20 (2022).

    PubMed Central  PubMed  Google Scholar 

  118. Millan, B. et al. Fecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent Clostridium difficile infection. Clin. Infect. Dis. 62, 1479–1486 (2016). The article provides information on the use of microbiome transplantation for fighting infections by highly resistant bacteria.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Leo, S. et al. Metagenomic characterization of gut microbiota of carriers of extended-spectrum beta-lactamase or carbapenemase-producing Enterobacteriaceae following treatment with oral antibiotics and fecal microbiota transplantation: results from a multicenter randomized trial. Microorganisms https://doi.org/10.3390/microorganisms8060941 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  120. Singh, R. et al. Fecal microbiota transplantation against intestinal colonization by extended spectrum beta-lactamase producing Enterobacteriaceae: a proof of principle study. BMC Res. Notes 11, 190 (2018).

    PubMed Central  PubMed  Google Scholar 

  121. DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    PubMed  Google Scholar 

  122. Lesbros-Pantoflickova, D., Corthesy-Theulaz, I. & Blum, A. L. Helicobacter pylori and probiotics. J. Nutr. 137, 812S–818S (2007).

    CAS  PubMed  Google Scholar 

  123. Lin, Y. C. et al. Probiotic Bacillus affects Enterococcus faecalis antibiotic resistance transfer by interfering with pheromone signaling cascades. Appl. Environ. Microbiol. 87, e00442-21 (2021).

    PubMed Central  PubMed  Google Scholar 

  124. Lazdins, A. et al. Potentiation of curing by a broad-host-range self-transmissible vector for displacing resistance plasmids to tackle AMR. PLoS ONE 15, e0225202 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Wieers, G. et al. Do probiotics during in-hospital antibiotic treatment prevent colonization of gut microbiota with multi-drug-resistant bacteria? A randomized placebo-controlled trial comparing Saccharomyces to a mixture of Lactobacillus, Bifidobacterium, and Saccharomyces. Front. Public Health 8, 578089 (2020).

    PubMed  Google Scholar 

  126. Ouwehand, A. C., Forssten, S., Hibberd, A. A., Lyra, A. & Stahl, B. Probiotic approach to prevent antibiotic resistance. Ann. Med. 48, 246–255 (2016).

    CAS  PubMed  Google Scholar 

  127. Gueimonde, M., Sanchez, B., de Los Reyes-Gavilán, C. G. & Margolles, A. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 4, 202 (2013).

    PubMed Central  PubMed  Google Scholar 

  128. Esaiassen, E. et al. Bifidobacterium longum subspecies infantis bacteremia in 3 extremely preterm infants receiving probiotics. Emerg. Infect. Dis. 22, 1664–1666 (2016).

    PubMed Central  PubMed  Google Scholar 

  129. Dharmaratne, P., Rahman, N., Leung, A. & Ip, M. Is there a role of faecal microbiota transplantation in reducing antibiotic resistance burden in gut? A systematic review and meta-analysis. Ann. Med. 53, 662–681 (2021).

    PubMed Central  PubMed  Google Scholar 

  130. Cavallo, F. M., Jordana, L., Friedrich, A. W., Glasner, C. & van Dijl, J. M. Bdellovibrio bacteriovorus: a potential ‘living antibiotic’ to control bacterial pathogens. Crit. Rev. Microbiol. 47, 630–646 (2021).

    CAS  PubMed  Google Scholar 

  131. Perez, J., Contreras-Moreno, F. J., Marcos-Torres, F. J., Moraleda-Munoz, A. & Munoz-Dorado, J. The antibiotic crisis: how bacterial predators can help. Comput. Struct. Biotechnol. J. 18, 2547–2555 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Saralegui, C. et al. Strain-specific predation of Bdellovibrio bacteriovorus on Pseudomonas aeruginosa with a higher range for cystic fibrosis than for bacteremia isolates. Sci. Rep. 12, 10523 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Snyder, A. R., Williams, H. N., Baer, M. L., Walker, K. E. & Stine, O. C. 16S rDNA sequence analysis of environmental Bdellovibrio-and-like organisms (BALO) reveals extensive diversity. Int. J. Syst. Evol. Microbiol. 52, 2089–2094 (2002).

    CAS  PubMed  Google Scholar 

  134. Atterbury, R. J. & Tyson, J. Predatory bacteria as living antibiotics — where are we now? Microbiology https://doi.org/10.1099/mic.0.001025 (2021). This article is a recent review on the potential use of bacterial predators for fighting infections.

    Article  PubMed  Google Scholar 

  135. Bratanis, E., Andersson, T., Lood, R. & Bukowska-Faniband, E. Biotechnological potential of Bdellovibrio and like organisms and their secreted enzymes. Front. Microbiol. 11, 662 (2020).

    PubMed Central  PubMed  Google Scholar 

  136. Im, H., Choi, S. Y., Son, S. & Mitchell, R. J. Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Sci. Rep. 7, 14415 (2017).

    PubMed Central  PubMed  Google Scholar 

  137. Marine, E., Milner, D. S., Lambert, C., Sockett, R. E. & Pos, K. M. A novel method to determine antibiotic sensitivity in Bdellovibrio bacteriovorus reveals a DHFR-dependent natural trimethoprim resistance. Sci. Rep. 10, 5315 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Bornier, F. et al. Environmental free-living amoebae can predate on diverse antibiotic-resistant human pathogens. Appl. Environ. Microbiol. 87, e0074721 (2021).

    PubMed  Google Scholar 

  139. Pérez-Acevedo, G., Bosch-Alcaraz, A. & Torra-Bou, J. E. Larval therapy for treatment of chronic wounds colonized by multi-resistant pathogens in a pediatric patient: a case study. J. Wound Ostomy Cont. Nurs. 49, 373–378 (2022).

    Google Scholar 

  140. Negus, D. et al. Predator versus pathogen: how does predatory Bdellovibrio bacteriovorus interface with the challenges of killing gram-negative pathogens in a host setting? Annu. Rev. Microbiol. 71, 441–457 (2017).

    CAS  PubMed  Google Scholar 

  141. Sanchez, P. et al. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J. Antimicrob. Chemother. 50, 657–664 (2002).

    CAS  PubMed  Google Scholar 

  142. Merker, M. et al. Evolutionary approaches to combat antibiotic resistance: opportunities and challenges for precision medicine. Front. Immunol. 11, 1938 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Di Venanzio, G. et al. Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable their dissemination. Proc. Natl Acad. Sci. USA 116, 1378–1383 (2019).

    PubMed Central  PubMed  Google Scholar 

  144. Banerji, A., Jahne, M., Herrmann, M., Brinkman, N. & Keely, S. Bringing community ecology to bear on the issue of antimicrobial resistance. Front. Microbiol. 10, 2626 (2019).

    PubMed Central  PubMed  Google Scholar 

  145. Bottery, M. J. et al. Inter-species interactions alter antibiotic efficacy in bacterial communities. ISME J. 16, 812–821 (2022).

    CAS  PubMed  Google Scholar 

  146. Adamowicz, E. M., Muza, M., Chacon, J. M. & Harcombe, W. R. Cross-feeding modulates the rate and mechanism of antibiotic resistance evolution in a model microbial community of Escherichia coli and Salmonella enterica. PLoS Pathog. 16, e1008700 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Flynn, J. M. et al. Disruption of cross-feeding inhibits pathogen growth in the sputa of patients with cystic fibrosis. mSphere https://doi.org/10.1128/mSphere.00343-20 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  148. O’Brien, S., Baumgartner, M. & Hall, A. R. Species interactions drive the spread of ampicillin resistance in human-associated gut microbiota. Evol. Med. Public Health 9, 256–266 (2021).

    PubMed Central  PubMed  Google Scholar 

  149. Baumgartner, M., Bayer, F., Pfrunder-Cardozo, K. R., Buckling, A. & Hall, A. R. Resident microbial communities inhibit growth and antibiotic-resistance evolution of Escherichia coli in human gut microbiome samples. PLoS Biol. 18, e3000465 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Alcalde-Rico, M., Hernando-Amado, S., Blanco, P. & Martinez, J. L. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front. Microbiol. 7, 1483 (2016).

    PubMed Central  PubMed  Google Scholar 

  151. Wang-Kan, X. et al. Lack of AcrB efflux function confers loss of virulence on Salmonella enterica serovar Typhimurium. mBio https://doi.org/10.1128/mBio.00968-17 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  152. Warner, D. M., Folster, J. P., Shafer, W. M. & Jerse, A. E. Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J. Infect. Dis. 196, 1804–1812 (2007).

    CAS  PubMed  Google Scholar 

  153. Palmer, A. C. & Kishony, R. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat. Rev. Genet. 14, 243–248 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Garcia-Leon, G., Salgado, F., Oliveros, J. C., Sanchez, M. B. & Martinez, J. L. Interplay between intrinsic and acquired resistance to quinolones in Stenotrophomonas maltophilia. Env. Microbiol. 16, 1282–1296 (2014).

    CAS  Google Scholar 

  155. Finney-Manchester, S. P. & Maheshri, N. Harnessing mutagenic homologous recombination for targeted mutagenesis in vivo by TaGTEAM. Nucleic Acids Res. 41, e99 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Ma, L. et al. CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy. Proc. Natl Acad. Sci. USA 114, 11751–11756 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Nyerges, A. et al. Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. Proc. Natl Acad. Sci. USA 115, E5726–E5735 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Álvarez, B., Mencía, M., de Lorenzo, V. & Fernández, L. In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9. Nat. Commun. 11, 6436 (2020).

    PubMed Central  PubMed  Google Scholar 

  159. O’Neill, A. J. & Chopra, I. Use of mutator strains for characterization of novel antimicrobial agents. Antimicrob. Agents Chemother. 45, 1599–1600 (2001).

    PubMed Central  PubMed  Google Scholar 

  160. Sanz-García, F., Hernando-Amado, S. & Martínez, J. L. Mutation-driven evolution of Pseudomonas aeruginosa in the presence of either ceftazidime or ceftazidime-avibactam. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.01379-18 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  161. La Rosa, R., Rossi, E., Feist, A. M., Johansen, H. K. & Molin, S. Compensatory evolution of Pseudomonas aeruginosa’s slow growth phenotype suggests mechanisms of adaptation in cystic fibrosis. Nat. Commun. 12, 3186 (2021). This is a study on the in vivo evolution of P. aeruginosa causing chronic infections in patients with cystic fibrosis who are heavily treated with antibiotics.

    PubMed Central  PubMed  Google Scholar 

  162. Luria, S. E. & Delbruck, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Navas, A. et al. Experimental validation of Haldane’s hypothesis on the role of infection as an evolutionary force for Metazoans. Proc. Natl Acad. Sci. USA 104, 13728–13731 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Hughes, D. & Andersson, D. I. Evolutionary trajectories to antibiotic resistance. Annu. Rev. Microbiol. 71, 579–596 (2017).

    CAS  PubMed  Google Scholar 

  165. Gould, S. J. & Vrba, S. Exaptation: a missing term in the science of form. Paleobiology 8, 4–15 (1982).

    Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories was supported by Ministerio de Ciencia e Innovación (MCIN), Agencia Estatal de Investigación (AEI) MCIN/AEI/10.13039/501100011033 grant PID2020-113521RB-I00. T.G.-G. is recipient of a Formación de Personal Investigador fellowship from Ministerio de Economía y Competitividad.

Author information

Authors and Affiliations

Authors

Contributions

J.L.M., S.H.-A., F.S.-G. and F.B. contributed substantially to the discussion of the content. J.L.M, T.G.-G., S.H.-A., P.L., L.-E.O.-S., P.B., F.S.-G. and F.B. wrote the article. J.L.M, T.G.-G., S.H.-A., P.L., L.-E.O.-S., P.B., F.S.-G. and F.B. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to José Luis Martínez or Sara Hernando-Amado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanz-García, F., Gil-Gil, T., Laborda, P. et al. Translating eco-evolutionary biology into therapy to tackle antibiotic resistance. Nat Rev Microbiol 21, 671–685 (2023). https://doi.org/10.1038/s41579-023-00902-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00902-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology