Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Limits on the luminance of dark matter from xenon recoil data

Abstract

It is commonly conjectured that dark matter is a charge neutral fundamental particle. However, it may still have minute photon-mediated interactions through millicharge1,2 or higher-order multipole interactions3,4,5,6,7,8,9,10, resulting from new physics at a high energy scale. Here we report a direct search for effective electromagnetic interactions between dark matter and xenon nuclei that produce a recoil of the latter from the PandaX-4T xenon-based detector11,12. Using this technique, the first constraint on the charge radius of dark matter is derived with the lowest excluded value of 1.9 × 10−10 fm2 for a dark matter mass of 40 giga electron volts per speed of light in a vaccum squared (GeV/c2), more stringent than that for neutrinos by four orders of magnitude. Constraints on the magnitudes of millicharge, magnetic dipole moment, electric dipole moment and anapole moment are also improved substantially from previous searches13,14, with corresponding tightest upper limits of 2.6 × 10−11 e, 4.8 × 10−10 Bohr magnetons, 1.2 × 10−23 ecm and 1.6 × 10−33 cm2, respectively, for a dark matter mass of 20–40 GeV/c2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diagram showing photon-mediated interaction in a xenon detector.
Fig. 2: Expected distributions of photon-mediated interactions in the PandaX-4T detector.
Fig. 3: Constraints on the luminance of dark matter.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the article. Extra data are available from the corresponding author upon request.

References

  1. Barkana, R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 555, 71–74 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Li, Q. & Liu, Z. Two-component millicharged dark matter and the EDGES 21 cm signal. Chin. Phys. C 46, 045102 (2022).

    Article  ADS  Google Scholar 

  3. Sigurdson, K., Doran, M., Kurylov, A., Caldwell, R. R. & Kamionkowski, M. Dark-matter electric and magnetic dipole moments. Phys. Rev. D 70, 083501 (2004).

    Article  ADS  Google Scholar 

  4. Banks, T., Fortin, J.-F. & Thomas, S. Direct detection of dark matter electromagnetic dipole moments. Preprint at https://arxiv.org/abs/1007.5515 (2010).

  5. Del Nobile, E., Kouvaris, C., Panci, P., Sannino, F. & Virkajarvi, J. Light magnetic dark matter in direct detection searches. J. Cosmol. Astropart. Phys. 08, 010 (2012).

    Article  Google Scholar 

  6. Del Nobile, E. Complete Lorentz-to-Galileo dictionary for direct dark matter detection. Phys. Rev. D 98, 123003 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  7. Fitzpatrick, A. L., Haxton, W., Katz, E., Lubbers, N. & Xu, Y. The effective field theory of dark matter direct detection. J. Cosmol. Astropart. Phys. 2013, 004 (2013).

    Article  CAS  Google Scholar 

  8. Ho, C. M. & Scherrer, R. J. Anapole dark matter. Phys. Lett. B 722, 341–346 (2013).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  9. Nobile, E. D., Gelmini, G. B., Gondolo, P. & Huh, J.-H. Direct detection of light anapole and magnetic dipole DM. J. Cosmol. Astropart. Phys. 2014, 019 (2014).

    Article  Google Scholar 

  10. Gao, Y., Ho, C. M. & Scherrer, R. J. Anapole dark matter at the LHC. Phys. Rev. D 89, 045006 (2014).

    Article  ADS  Google Scholar 

  11. Meng, Y. et al. Dark matter search results from the PandaX-4T commissioning run. Phys. Rev. Lett. 127, 261802 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Zhang, H. et al. Dark matter direct search sensitivity of the PandaX-4T experiment. Sci. China Phys. Mech. Astron. 62, 31011 (2019).

    Article  ADS  Google Scholar 

  13. Adhikari, P., Ajaj, R. & Auty, D. J. et al. Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the deap-3600 detector. Phys. Rev. D 102, 082001 (2020).

    Article  CAS  ADS  Google Scholar 

  14. Ali, B. et al. Results on photon-mediated dark-matter–nucleus interactions from the PICO-60 C3F8 bubble chamber. Phys. Rev. D 106, 042004 (2022).

    Article  CAS  ADS  Google Scholar 

  15. Penzias, A. A. & Wilson, R. W. A measurement of excess antenna temperature at 4080-Mc/s. Astrophys. J. 142, 419–421 (1965).

    Article  ADS  Google Scholar 

  16. Dicke, R. H., Peebles, P. J. E., Roll, P. G. & Wilkinson, D. T. Cosmic black-body radiation. Astrophys. J. 142, 414–419 (1965).

    Article  ADS  Google Scholar 

  17. Gershtein, S. S. & Zeldovich, Y. B. Rest mass of muonic neutrino and cosmology. JETP Lett. 4, 120–122 (1966).

    ADS  Google Scholar 

  18. Boddy, K. K. et al. Critical assessment of CMB limits on dark matter-baryon scattering: new treatment of the relative bulk velocity. Phys. Rev. D 98, 123506 (2018).

    Article  CAS  ADS  Google Scholar 

  19. Buch, J., Fan, J. & Leung, J. S. C. Implications of the Gaia sausage for dark matter nuclear interactions. Phys. Rev. D 101, 063026 (2020).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  20. Majorana, E. Teoria simmetrica dell’elettrone e del positrone. Nuovo Cim. 14, 171–184 (1937).

    Article  CAS  MATH  ADS  Google Scholar 

  21. Kavanagh, B. J., Panci, P. & Ziegler, R. Faint light from dark matter: classifying and constraining dark matter-photon effective operators. J. High Energy Phys. 2019, 89 (2019).

    Article  Google Scholar 

  22. Bai, Y. & Berger, J. Lepton portal dark matter. J. High Energy Phys. 2014, 153 (2014).

    Article  Google Scholar 

  23. Kawamura, J., Okawa, S. & Omura, Y. Current status and muon g2 explanation of lepton portal dark matter. J. High Energy Phys. 08, 042 (2020).

    Article  ADS  Google Scholar 

  24. Hambye, T. & Xu, X.-J. Dark matter electromagnetic dipoles: the WIMP expectation. J. High Energy Phys. 11, 156 (2021).

    Article  ADS  Google Scholar 

  25. Ibarra, A. & Wild, S. Dirac dark matter with a charged mediator: a comprehensive one-loop analysis of the direct detection phenomenology. J. Cosmol. Astropart. Phys. 2015, 047 (2015).

    Article  Google Scholar 

  26. Hisano, J., Nagai, R. & Nagata, N. Singlet dirac fermion dark matter with mediators at loop. J. High Energy Phys. 2018, 1–43 (2018).

    Article  Google Scholar 

  27. Anand, N., Fitzpatrick, A. L. & Haxton, W. C. Weakly interacting massive particle-nucleus elastic scattering response. Phys. Rev. C 89, 065501 (2014).

    Article  ADS  Google Scholar 

  28. Baxter, D. et al. Recommended conventions for reporting results from direct dark matter searches. Eur. Phys. J. C 81, 907 (2021).

    Article  CAS  ADS  Google Scholar 

  29. Szydagis, M. et al. Noble element simulation technique v2.0. Zenodo https://doi.org/10.5281/zenodo.1314669 (2018).

  30. Szydagis, M. et al. A review of basic energy reconstruction techniques in liquid xenon and argon detectors for dark matter and neutrino physics using nest. Instruments 5, 13 (2021).

    Article  CAS  Google Scholar 

  31. Szydagis, M. et al. A review of NEST models, and their application to improvement of particle identification in liquid xenon experiments. Preprint at https://arxiv.org/abs/2211.10726 (2022).

  32. del Aguila, F. & Sher, M. The electric dipole moment of the tau. Phys. Lett. B 252, 116–118 (1990).

    Article  ADS  Google Scholar 

  33. Workman, R. L. et al. Review of particle physics. Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

    Article  Google Scholar 

  34. Cabral-Rosetti, L. G., Moreno, M. & Rosado, A. Dirac neutrino anapole moment. AIP Conf. Proc. 623, 347–350 (2002).

    Article  CAS  MATH  ADS  Google Scholar 

  35. Haxton, W. C. & Wieman, C. E. Atomic parity nonconservation and nuclear anapole moments. Ann. Rev. Nucl. Part. Sci. 51, 261–293 (2001).

    Article  CAS  ADS  Google Scholar 

  36. Zhang, D. et al. Rb83/Kr83m production and cross-section measurement with 3.4 MeV and 20 MeV proton beams. Phys. Rev. C 105, 014604 (2022).

    Article  CAS  ADS  Google Scholar 

  37. Ma, W. et al. Internal calibration of the PandaX-II detector with radon gaseous sources. J. Inst. 15, P12038 (2020).

    CAS  Google Scholar 

  38. Lindhard, J., Nielsen, V., Scharff, M. & Thomsen, P. Integral equations governing radiation effects (notes on atomic collisions, III). Mat. Fys. Medd. Dan. Vid. Selsk 33, 10 (1963).

    MATH  Google Scholar 

  39. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  40. Huang, Z. et al. Neutron-induced nuclear recoil background in the PandaX-4T experiment. Chin. Phys. C 46, 115001 (2022).

    Article  ADS  Google Scholar 

  41. Billard, J., Strigari, L. & Figueroa-Feliciano, E. Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. D 89, 023524 (2014).

    Article  ADS  Google Scholar 

  42. Arina, C., Cheek, A., Mimasu, K. & Pagani, L. Light and darkness: consistently coupling dark matter to photons via effective operators. Eur. Phys. J. C 81, 223 (2021).

    Article  CAS  ADS  Google Scholar 

  43. Fitzpatrick, A. L., Haxton, W., Katz, E., Lubbers, N. & Xu, Y. Model independent direct detection analyses. Preprint at https://arxiv.org/abs/1211.2818 (2012).

  44. Bishara, F., Brod, J., Grinstein, B. & Zupan, J. From quarks to nucleons in dark matter direct detection. J. High Energy Phys. 11, 059 (2017).

    Article  MATH  ADS  Google Scholar 

  45. Belanger, G., Mjallal, A. & Pukhov, A. Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios. Eur. Phys. J. C 81, 239 (2021).

    Article  CAS  ADS  Google Scholar 

  46. Wang, Q. et al. Results of dark matter search using the full PandaX-II exposure. Chin. Phys. C 44, 125001 (2020).

    Article  CAS  ADS  Google Scholar 

  47. Cui, X. et al. Dark matter results from 54-ton-day exposure of PandaX-II experiment. Phys. Rev. Lett. 119, 181302 (2017).

    Article  PubMed  ADS  Google Scholar 

  48. Zhang, D. et al. Search for light fermionic dark matter absorption on electrons in PandaX-4T. Phys. Rev. Lett. 129, 161804 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

We thank W. Haxton, Y. Bai, Z. Liu and N. Nagata for helpful discussions. This project is supported in part by grants from National Natural Science Foundation of China (grant nos. 12090061, 12005131, 11925502 and 11835005), a grant from the Ministry of Science and Technology of China (grant no. 2016YFA0400301), and by Office of Science and Technology, Shanghai Municipal Government (grant no. 22JCJC1410200). We thank Double First Class Plan of the Shanghai Jiao Tong University and the Tsung-Dao Lee Institute Experimental Platform Development Fund for support. We also thank the sponsorship from the Hongwen Foundation in Hong Kong, Tencent Foundation in China and Yangyang Development Fund. Finally, we thank the CJPL administration and the Yalong River Hydropower Development Company Ltd for indispensable logistical support and other help.

Author information

Authors and Affiliations

Consortia

Contributions

This work is the result of the contributions and efforts of all participating institutes of the PandaX Collaboration, under the leadership of the hosting institute, Shanghai Jiao Tong University. The collaboration has constructed and operated the PandaX-4T apparatus, and performed the data processing, calibration and data selections. J.Liu is the Collaboration Spokesperson. N.Z. initiated the effective field theory studies and the application to the dark matter electromagnetic properties with the PandaX data. X.N. and N.Z. performed the calculation of theoretical models, data analysis and hypothesis tests. The paper draft was prepared by X.N. and N.Z., extensively edited by J.Liu and reviewed by X.J., L.Geng and Y.Yang. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Jianglai Liu or Ning Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Giuliana Fiorillo, Masaki Yamashita and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Detector efficiency.

a,b, The nuclear recoil signal efficiency (with shaded band representing the uncertainty) for data in sets 4 and 5, as a function of nuclear recoil energy in keVNR or S1/S2 signal in PE.

Source data

Extended Data Fig. 2 Detector response.

a,b, Light yield for nuclear (a) and electron (b) recoil signal used in this work at 92.8 V/cm, as compared with the nominal NEST v2.3.6 values and uncertainties29,30,31.

Source data

Extended Data Table 1 Detector configurations
Extended Data Table 2 Background components
Extended Data Table 3 Standard Halo Model parameters

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PandaX Collaboration. Limits on the luminance of dark matter from xenon recoil data. Nature 618, 47–50 (2023). https://doi.org/10.1038/s41586-023-05982-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05982-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing