Skip to main content
Log in

Three new copper-lead selenite bromides obtained by chemical vapor transport: Pb5Cu+4(SeO3)4Br6, Pb8Cu2+(SeO3)4Br10, and the synthetic analogue of the mineral sarrabusite, Pb5Cu2+(SeO3)4(Br,Cl)4

  • Research
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Three new copper-lead selenite bromides were synthesized by chemical vapor transport reactions. Pb5Cu+4(SeO3)4Br6 is monoclinic, space group C2/m, a = 17.7248(14), b = 5.5484(5), c = 12.7010(10) Å, β = 103.398(2)º, V = 1215.08(17) Å3, R1 = 0.024; Pb8Cu2+(SeO3)4Br10 is orthorhombic, space group I222, a = 9.5893(5), b = 12.4484(9), c = 12.7927(6) Å, V = 1527.08(15) Å3, R1 = 0.027; Pb5Cu2+(SeO3)4(Br,Cl)4 is monoclinic, C2/c, a = 24.590(6) Å, b = 5.5786(14) Å, c = 14.248(4) Å, β = 102.883(7)º, V = 1905.3(9) Å3, R1 = 0.026. The crystal structure of Pb5Cu+4(SeO3)4Br6 consists of two distinct parts: corner- and edge-sharing Cu+Br4 tetrahedra form infinite [Cu+4Br6]2- layers which alternate with [Pb5(SeO3)4]2+ layers. Pb8Cu2+(SeO3)4Br10 contains positively charged unique [Pb8Cu2+(SeO3)4]10+ rod-like chains with Cu2+ cations in the core. These chains are held together by Br- anions. Pb5Cu+4(SeO3)4Br6 and Pb8Cu2+(SeO3)4Br10 belong to new structure types. Pb5Cu2+(SeO3)4(Br,Cl)4 is a synthetic analogue of the mineral sarrabusite, Pb5Cu(SeO3)4Cl4, previously known from an electron diffraction study. The investigation of this synthetic equivalent of sarrabusite by conventional single-crystal X-ray diffraction provides a distinctly improved insight in this crystal structure. Cu atom has well-defined [2O+(2O+2X)] (X = halogen) distorted octahedral coordination. PbOn and SeO3 polyhedra interconnect via common oxygen atoms into [Pb5(SeO3)4]2+ layers parallel to (001). Cu2+ cations interconnect the layers into the framework with the large cavities filled by halide X anions. In all three new compounds described, a common feature is the formation of the selenophile substructure which is terminated by a ‘lone-pair’ shell that faces bromide complexes thus forming the surface of a halophile substructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JB, Kostiner E, Ruszala FA (1981) The crystal structure of Ca3Cu3(PO4)4. J. Solid State Chem. 39:29–34

    Article  Google Scholar 

  • Badrtdinov DI, Kuznetsova ES, Verchenko VY, Berdonosov PS, Dolgikh VA, Mazurenko V, Tsirlin AA (2018) Magnetism of coupled spin tetrahedra in ilinskite-type KCu5O2(SeO3)2Cl3. Sci Rep 8:2379

    Article  Google Scholar 

  • Becker R, Johnsson M, Kremer R, Lemmens P (2003) Crystal structure, magnetic properties and conductivity of CuSbTeO3Cl2. Solid State Sci. 5:1411–1416

    Article  Google Scholar 

  • Berdonosov PS, Kuznetsova ES, Dolgikh VA (2018) Transition metal selenite halides: a fascinating family of magnetic compounds. Crystals 8:159

    Article  Google Scholar 

  • Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197

    Article  Google Scholar 

  • Burns PC, Hawthorne FC (1996) Static and dynamic Jahn-Teller effects in Cu2+ oxysalt minerals Can Mineral 34:1089–1105

  • Campostrini I, Gramaccioli CM, Demartin F (1999) Orlandiite, Pb3Cl4(SeO3)3∙H2O, a new mineral species, and an associated lead-copper selenite chloride from the Baccu Locci mine, Sardinia, Italy. Can Mineral 37:1493–1498

    Google Scholar 

  • Demartin F, Gramaccioli CM, Campostrini I, Orlandi P (2008) Demicheleite, BiSBr, a new mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy. Am Mineral 93:1603–1607

    Article  Google Scholar 

  • Escobal J, Pizarro JL, Mesa JL, Larranaga A, Fernandez JR, Arriortua MI, Rojo T (2006) Neutron diffraction, specific heat and magnetic susceptibility of Ni3(PO4)2. J. Solid State Chem. 179:3052–3058

    Article  Google Scholar 

  • Gagné OC, Hawthorne FC (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr B 71:561–578

    Article  Google Scholar 

  • Gemmi M, Campostrini I, Demartin F, Gorelik TE, Gramaccioli CM (2012) Structure of the new mineral sarrabusite, Pb5CuCl4(SeO3)4, solved by manual electron-diffraction tomography. Acta Crystallogr B 68:15–23

    Article  Google Scholar 

  • Ginga VA, Siidra OI, Ugolkov VL, Bubnova RS (2021) Refinement of the crystal structure and features of the thermal behavior of volborthite Cu3V2O7(OH)2⋅2H2O from the Tyuya-Muyun deposit, Kyrgyzstan. Zapiski Rossiyskogo Mineralogicheskogo Obshchestva 150:115–133 ((In Russian))

    Google Scholar 

  • Ginga VA, Siidra OI, Breitner F, Jesche A, Tsirlin AA (2022) Chemical vapor transport synthesis of Cu(VO)2(AsO4)2 with two distinct spin-1/2 magnetic ions. Inorg. Chem. 61:16539–16548

    Article  Google Scholar 

  • Han TH, Helton JS, Chu S, Prodi A, Singh DK, Mazzoli C, Müller P, Nocera DG, Lee YS (2011) Synthesis and characterization of single crystals of the spin-1/2 kagome-lattice antiferromagnets ZnxCu4-x(OH)6Cl2. Phys Rev B 83:100402

    Article  Google Scholar 

  • Hu S-Z (2007) A new approach to bond valence parameters for Pb(II)-halide bonds. Acta Phys Chim Sin 23:786–789 ((in Chinese))

    Article  Google Scholar 

  • Karpenko VYu, Pautov LP, Siidra OI, Mirakov M, Zaitsev AN, Plechov PYu, Makhmadsharif S (2023) Ermakovite (NH4)(As2O3)2Br, a new exhalative arsenite bromide mineral from the Fan-Yagnob coal deposit, Tajikistan. Mineral Mag 87:69–78.

  • Krivovichev SV, Filatov SK, Burns PC, Vergasova LP (2006) The crystal structure of allochalcoselite, Cu+Cu2+5PbO2(SeO3)2Cl5, a mineral with well-defined Cu+ and Cu2+ positions. Can. Mineral. 44:507–514

    Article  Google Scholar 

  • Krivovichev SV, Filatov SK, Vergasova LP (2013) The crystal structure of ilinskite, NaCu5O2(SeO3)2Cl3, and review of mixed-ligand CuOmCln coordination geometries in minerals and inorganic compounds. Miner Petrol 107:235–242

    Article  Google Scholar 

  • Krivovichev SV, Gorelova LA (2018) Se-Cl interactions in selenite chlorides: a theoretical study. Crystals 8:193

    Article  Google Scholar 

  • Mayerová Z, Johnsson M, Lidin S (2006) Lone-pair interfaces that divide inorganic materials into ionic and covalent parts. Angew Chem Int Edit 45:5602–5606

    Article  Google Scholar 

  • Senga Y, Kawahara A (1980) The structure of synthetic copper sodium phosphate: Cu9Na6(PO4)8. Acta Crystallogr B 36:2555–2558

    Article  Google Scholar 

  • Shuvalov RR, Vergasova LP, Semenova TF, Filatov SK, Krivovichev SV, Siidra OI, Rudashevsky NS (2013) Prewittite, KPb1.5Cu6Zn(SeO3)2O2Cl10, a new mineral from Tolbachik. Am Mineral 98:463–469

    Article  Google Scholar 

  • Siidra OI, Kozin MS, Depmeier W, Kayukov RA, Kovrugin VM (2018) Copper-lead selenite bromides: A new large family of compounds partly having Cu2+ substructures derivable from Kagome-nets. Acta Crystallogr B 74:712–724

    Article  Google Scholar 

  • Siidra OI, Vladimirova VA, Tsirlin AA, Chukanov NV, Ugolkov VL (2020) Cu9O2(VO4)4Cl2, the first copper oxychloride vanadate: mineralogically inspired synthesis and magnetic behavior. Inorg Chem 59:2136–2143

    Article  Google Scholar 

  • Siidra OI, Charkin DO, Kovrugin VM, Borisov AS (2021) K(Na,K)Na2[Cu2(SO4)4]: a new highly porous anhydrous sulfate and evaluation of possible ion migration pathways. Acta Crystallogr B 77:1003–1011

    Article  Google Scholar 

  • Vegard L, Skofteland G (1942) Roentgenometrische Untersuchungen der aus den Substanzen CuCl, CuBr und CuI gebildeten binaeren Mischkristallsysteme. Archiv for Mathematik og Naturvidenskab 45:163–192

    Google Scholar 

  • Yakubovich OV, Steele IM, Dimitrova OV (2008) A new type of mixed anionic framework in microporous rubidium copper vanadyl(V) phosphate, Rb2Cu(VO2)2(PO4)2. Acta Crystallogr C 64:i62–i65

    Article  Google Scholar 

  • Zhang D, Berger H, Kremer RK, Wulferding D, Lemmens P, Johnsson M (2010) Synthesis, crystal structure and magnetic properties of the copper selenite chloride: Cu5(SeO3)4Cl2. Inorg Chem 49:9683–9688

    Article  Google Scholar 

Download references

Acknowledgements

Technical support by the St. Petersburg State University X-ray Diffraction Resource Centre is gratefully acknowledged. We are grateful to two anonymous reviewers and Guest Editor Gerald Giester for their many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg I. Siidra.

Additional information

Editorial handling: G. Giester.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siidra, O.I., Grishaev, V.Y., Nazarchuk, E.V. et al. Three new copper-lead selenite bromides obtained by chemical vapor transport: Pb5Cu+4(SeO3)4Br6, Pb8Cu2+(SeO3)4Br10, and the synthetic analogue of the mineral sarrabusite, Pb5Cu2+(SeO3)4(Br,Cl)4. Miner Petrol 117, 281–291 (2023). https://doi.org/10.1007/s00710-023-00825-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-023-00825-2

Keywords

Navigation