Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution

Abstract

Protein stability is an essential property for biological function. In contrast to the vast knowledge on protein stability in vitro, little is known about the factors governing in-cell stability. Here we show that the metallo-β-lactamase (MBL) New Delhi MBL-1 (NDM-1) is a kinetically unstable protein on metal restriction that has evolved by acquiring different biochemical traits that optimize its in-cell stability. The nonmetalated (apo) NDM-1 is degraded by the periplasmic protease Prc that recognizes its partially unstructured C-terminal domain. Zn(II) binding renders the protein refractory to degradation by quenching the flexibility of this region. Membrane anchoring makes apo-NDM-1 less accessible to Prc and protects it from DegP, a cellular protease degrading misfolded, nonmetalated NDM-1 precursors. NDM variants accumulate substitutions at the C terminus that quench its flexibility, enhancing their kinetic stability and bypassing proteolysis. These observations link MBL-mediated resistance with the essential periplasmic metabolism, highlighting the importance of the cellular protein homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metal depletion can trigger degradation or aggregation of apo MBLs within the periplasm.
Fig. 2: Proteases Prc and DegP mediate the degradation of NDM-1.
Fig. 3: In vitro analysis of Prc and DegP proteolytic activity on MBLs.
Fig. 4: Prc forms complexes with apo-rNDM-1, and NlpI competes with apo-rNDM-1 for binding to the protease.
Fig. 5: Substitution A233V in rNDM-6 quenches C terminus dynamics of the apo form, reducing degradation by Prc and DegP compared to NDM-1.
Fig. 6: Life cycle of membrane-bound and soluble MBLs in the bacterial periplasm.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information files. The following protein structures were downloaded from the Research Collaboratory for Structural Bioinformatics PDB: apo-rNDM-1 (PDB 3SPU and PDB 3SBL), Prc (PDB 5WQL), holo-rNDM-1 (PDB 5ZGX), apo-rNDM-1 (PDB 3SBL), holo-rBcII (PDB 3I13), apo-rBcII (PDB 3I0V) and Prc K477A (PDB: 5WQL). Source data are provided with this paper.

References

  1. DePristo, M. A., Weinreich, D. M. & Hartl, D. L. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat. Rev. Genet. 6, 678–687 (2005).

    CAS  PubMed  Google Scholar 

  2. Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    CAS  PubMed  Google Scholar 

  3. Thomas, V. L., McReynolds, A. C. & Shoichet, B. K. Structural bases for stability-function tradeoffs in antibiotic resistance. J. Mol. Biol. 396, 47–59 (2010).

    CAS  PubMed  Google Scholar 

  4. Socha, R. D. & Tokuriki, N. Modulating protein stability—directed evolution strategies for improved protein function. FEBS J. 280, 5582–5595 (2013).

    CAS  PubMed  Google Scholar 

  5. Sanchez-Ruiz, J. M. Protein kinetic stability. Biophys. Chem. 148, 1–15 (2010).

    CAS  PubMed  Google Scholar 

  6. Monteith, W. B., Cohen, R. D., Smith, A. E., Guzman-Cisneros, E. & Pielak, G. J. Quinary structure modulates protein stability in cells. Proc. Natl Acad. Sci. USA 112, 1739–1742 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Colón, W. et al. Biological roles of protein kinetic stability. Biochemistry 56, 6179–6186 (2017).

    PubMed  Google Scholar 

  8. Jaswal, S. S., Sohl, J. L., Davis, J. H. & Agard, D. A. Energetic landscape of α-lytic protease optimizes longevity through kinetic stability. Nature 415, 343–346 (2002).

    CAS  PubMed  Google Scholar 

  9. Kelch, B. A. et al. Structural and mechanistic exploration of acid resistance: kinetic stability facilitates evolution of extremophilic behavior. J. Mol. Biol. 368, 870–883 (2007).

    CAS  PubMed  Google Scholar 

  10. López, C., Delmonti, J., Bonomo, R. A. & Vila, A. J. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J. Biol. Chem. 298, 101665 (2022).

    PubMed  PubMed Central  Google Scholar 

  11. Meini, M. R., Tomatis, P. E., Weinreich, D. M. & Vila, A. J. Quantitative description of a protein fitness landscape based on molecular features. Mol. Biol. Evol. 32, 1774–1787 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness–epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006).

    CAS  PubMed  Google Scholar 

  13. Bahr, G., Gonzalez, L. J. & Vila, A. J. Metallo-beta-lactamases in the age of multidrug resistance: from structure and mechanism to evolution, dissemination, and inhibitor design. Chem. Rev. 121, 7957–8094 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gonzalez, L. J. et al. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-beta-lactamase. Nat. Chem. Biol. 12, 516–522 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bahr, G. et al. Clinical evolution of New Delhi metallo-beta-lactamase (NDM) optimizes resistance under Zn(II) deprivation. Antimicrob. Agents Chemother. 62, e01849–17 (2018).

    PubMed  Google Scholar 

  16. Lonergan, Z. R. & Skaar, E. P. Nutrient zinc at the host-pathogen interface. Trends Biochem. Sci. 44, 1041–1056 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zygiel, E. M. & Nolan, E. M. Transition metal sequestration by the host-defense protein calprotectin. Annu. Rev. Biochem. 87, 621–643 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Moran-Barrio, J., Limansky, A. S. & Viale, A. M. Secretion of GOB metallo-beta-lactamase in Escherichia coli depends strictly on the cooperation between the cytoplasmic DnaK chaperone system and the Sec machinery: completion of folding and Zn(II) ion acquisition occur in the bacterial periplasm. Antimicrob. Agents Chemother. 53, 2908–2917 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng, Z. et al. Evolution of New Delhi metallo-beta-lactamase (NDM) in the clinic: iffects of NDM mutations on stability, zinc affinity, and mono-zinc activity. J. Biol. Chem. 293, 12606–12618 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. King, D. & Strynadka, N. Crystal structure of New Delhi metallo-beta-lactamase reveals molecular basis for antibiotic resistance. Protein Sci. 20, 1484–1491 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Prunotto, A., Bahr, G., Gonzalez, L. J., Vila, A. J. & Dal Peraro, M. Molecular bases of the membrane association mechanism potentiating antibiotic resistance by New Delhi metallo-beta-lactamase 1. ACS Infect. Dis. 6, 2719–2731 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Su, M. Y. et al. Structural basis of adaptor-mediated protein degradation by the tail-specific PDZ-protease Prc. Nat. Commun. 8, 1516 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Singh, S. K., Parveen, S., SaiSree, L. & Reddy, M. Regulated proteolysis of a cross-link–specific peptidoglycan hydrolase contributes to bacterial morphogenesis. Proc. Natl Acad. Sci. USA 112, 10956–10961 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Silber, K. R., Keiler, K. C. & Sauer, R. T. Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini. Proc. Natl Acad. Sci. USA 89, 295–299 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).

    CAS  PubMed  Google Scholar 

  26. Gonzalez, L. J., Moreno, D. M., Bonomo, R. A. & Vila, A. J. Host-specific enzyme-substrate interactions in SPM-1 metallo-beta-lactamase are modulated by second sphere residues. PLoS Path. 10, e1003817 (2014).

    Google Scholar 

  27. Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fontana, A., Polverino de Laureto, P., De Filippis, V., Scaramella, E. & Zambonin, M. Probing the partly folded states of proteins by limited proteolysis. Fold. Des. 2, R17–R26 (1997).

    CAS  PubMed  Google Scholar 

  29. Rivière, G. et al. NMR characterization of the influence of zinc(II) ions on the structural and dynamic behavior of the New Delhi metallo-β-lactamase-1 and on the binding with flavonols as inhibitors. ACS Omega 5, 10466–10480 (2020).

    PubMed  PubMed Central  Google Scholar 

  30. Shen, Y. & Bax, A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 56, 227–241 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Narita, S. I. & Tokuda, H. Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim. Biophys. Acta 1862, 1414–1423 (2017).

    CAS  Google Scholar 

  32. Brambilla, L., Moran-Barrio, J. & Viale, A. M. Low-molecular-mass penicillin binding protein 6b (DacD) is required for efficient GOB-18 metallo-beta-lactamase biogenesis in Salmonella enterica and Escherichia coli. Antimicrob. Agents Chemother. 58, 205–211 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Sawa, J. et al. Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope. J. Biol. Chem. 286, 30680–30690 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lopez, C., Ayala, J. A., Bonomo, R. A., Gonzalez, L. J. & Vila, A. J. Protein determinants of dissemination and host specificity of metallo-beta-lactamases. Nat. Commun. 10, 3617 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Iwanczyk, J. et al. Role of the PDZ domains in Escherichia coli DegP protein. J. Bacteriol. 189, 3176–3186 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chueh, C.-K. et al. Structural basis for the differential regulatory roles of the PDZ domain in C-terminal processing proteases. mBio 10, e01129–19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Keiler, K. C. & Sauer, R. T. Identification of active site residues of the Tsp protease. J. Biol. Chem. 270, 28864–28868 (1995).

    CAS  PubMed  Google Scholar 

  38. Pierce, B. G. et al. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30, 1771–1773 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Banzhaf, M. et al. Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi‐enzyme complexes in Escherichia coli. EMBO J. 39, e102246 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Makena, A. et al. Biochemical characterization of New Delhi metallo-beta-lactamase variants reveals differences in protein stability. J. Antimicrob. Chemother. 70, 463–469 (2015).

    CAS  PubMed  Google Scholar 

  41. Chung, S. & Darwin, A. J. The C terminus of substrates is critical but not sufficient for their degradation by the Pseudomonas aeruginosa CtpA protease. J. Bacteriol. 202, e00174–20 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2001).

  43. Tomatis, P. E., Rasia, R. M., Segovia, L. & Vila, A. J. Mimicking natural evolution in metallo-beta-lactamases through second-shell ligand mutations. Proc. Natl Acad. Sci. USA 102, 13761–13766 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Uzzau, S., Figueroa-Bossi, N., Rubino, S. & Bossi, L. Epitope tagging of chromosomal genes in Salmonella. Proc. Natl Acad. Sci. USA 98, 15264–15269 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Osborn, M. J. & Munson, R. Separation of the inner (cytoplasmic) and outer membranes of gram-negative bacteria. Methods Enzymol. 31, 642–653 (1974).

  48. Clinical Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard - Ninth Edition. CLSI Document M07-A9 (CLSI, 2012).

  49. Hinchliffe, P. et al. Cross-class metallo-beta-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proc. Natl Acad. Sci. USA 113, E3745–E3754 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gonzalez, J. M. et al. Metallo-beta-lactamases withstand low Zn(II) conditions by tuning metal-ligand interactions. Nat. Chem. Biol. 8, 698–700 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Maciejewski, M. W. et al. NMRbox: a resource for biomolecular NMR computation. Biophys. J. 112, 1529–1534 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    CAS  PubMed  Google Scholar 

  53. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    CAS  Google Scholar 

  54. Dosset, P., Hus, J.-C., Blackledge, M. & Marion, D. Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J. Biomol. NMR 16, 23–28 (2000).

    CAS  PubMed  Google Scholar 

  55. Hansen, D. F., Vallurupalli, P. & Kay, L. E. An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J. Phys. Chem. B 112, 5898–5904 (2008).

    CAS  PubMed  Google Scholar 

  56. Zaballa, M.-E., Abriata, L. A., Donaire, A. & Vila, A. J. Flexibility of the metal-binding region in apo-cupredoxins. Proc. Natl Acad. Sci. USA 109, 9254–9259 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Institutes of Health (grant nos. R01AI100560 to R.A.B. and A.J.V., R01AI063517 to R.A.B. and R01AI072219 to R.A.B.) and Agencia I+d+i to A.J.V. (grant no. PICT 2020-0031) and L.J.G. (grant no. PICT 2020-1923). This study was supported in part by funds and/or facilities provided by the Cleveland Department of Veterans Affairs, award no. 1I01BX001974 to R.A.B. from the Biomedical Laboratory Research & Development Service of the VA Office of Research and Development and the Geriatric Research Education and Clinical Center VISN 10 to R.A.B. The NMR instrumentation was provided by PLABEM at IBR. G.B. and M.M.G. were recipients of fellowships from CONICET. A.J.V. and L.J.G. are staff members from CONICET. We are grateful to Marina Avecilla for excellent technical assistance. We thank L. Giono for designing and drawing Fig. 6 and the Graphical Abstract.

Author information

Authors and Affiliations

Authors

Contributions

L.J.G. and A.J.V. crafted the main hypothesis and designed research. L.J.G. performed the microbiological, molecular biology and biochemical experiments, and NMR experiments on interactions and NDM-6 dynamics. G.B. carried out the experiments involving proteins in liposomes and part of the proteolysis experiments and M.M.G. performed the NMR experiments on NDM-1 and BcII. L.J.G., G.B., R.A.B. and A.J.V. wrote the paper, and all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Alejandro J. Vila.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Emily Que and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 SEC and negative staining TEM demonstrate formation of complexes between Prc K477A and apo-rNDM-1.

a) SDS-PAGE analysis of SEC fractions corresponding to samples containing Prc K477A and either holo-rNDM-1 (top) or apo-rNDM-1 (bottom). b) Negative staining TEM of Prc K477A (top) or complexes of Prc K477A and apo NDM-1 (bottom). Samples for TEM analysis were obtained from SEC of the corresponding mixtures (shown in Fig. 4a), at the elution volume (VE in mL) indicated. Panels a, b show one of two independent experiments.

Source data

Extended Data Fig. 2 NlpI blocks association of apo-rNDM-1 to Prc K477A, possibly by occupying the same binding site on the protease.

a) SDS-PAGE analysis of SEC fractions from the left panel, corresponding to samples containing NlpI and apo-rNDM-1, with (bottom) or without (top) Prc K477A (two independent repetitions). b) Structural alignment of the Prc:NlpI complex (PDB 5WQL) and the proposed complex of Prc and apo-rNDM-1 (from Fig. 4b). NlpI and apo-rNDM-1 are shown as yellow and green ribbons, respectively, while Prc is shown in a magenta surface representation.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21; Tables 1–4; full, uncut gel images for Figs. 2, 8, 9 and 10; full, uncut gel images for Figs. 11, 12, 14, 15 and 17 and references.

Reporting Summary

Source data

Source Data Fig. 1

Source data Excel file for Fig. 1.

Source Data Fig. 2

Source data Excel file for Fig. 2.

Source Data Fig. 3

Source data Excel file for Fig. 3.

Source Data Fig. 4

Source data Excel file for Fig. 4.

Source Data Fig. 5

Source data Excel file for Fig. 5.

Source Data Extended Data Fig. 1

Source data Excel file for Extended Data Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, L.J., Bahr, G., González, M.M. et al. In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution. Nat Chem Biol 19, 1116–1126 (2023). https://doi.org/10.1038/s41589-023-01319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01319-0

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology