Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A platform for distributed production of synthetic nitrated proteins in live bacteria

Abstract

The incorporation of the nonstandard amino acid para-nitro-l-phenylalanine (pN-Phe) within proteins has been used for diverse applications, including the termination of immune self-tolerance. However, the requirement for the provision of chemically synthesized pN-Phe to cells limits the contexts where this technology can be harnessed. Here we report the construction of a live bacterial producer of synthetic nitrated proteins by coupling metabolic engineering and genetic code expansion. We achieved the biosynthesis of pN-Phe in Escherichia coli by creating a pathway that features a previously uncharacterized nonheme diiron N-monooxygenase, which resulted in pN-Phe titers of 820 ± 130 µM after optimization. After we identified an orthogonal translation system that exhibited selectivity toward pN-Phe rather than a precursor metabolite, we constructed a single strain that incorporated biosynthesized pN-Phe within a specific site of a reporter protein. Overall, our study has created a foundational technology platform for distributed and autonomous production of nitrated proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: De novo biosynthesis and site-specific incorporation of pN-Phe.
Fig. 2: Initial characterization for de novo synthesis pathway.
Fig. 3: Metabolic engineering for the synthesis of pN-Phe in E. coli.
Fig. 4: Bioprospecting of nonheme diiron monooxygenases for activity on pA-Pyr and pA-Phe.
Fig. 5: Aminoacyl-tRNA synthetase screening for incorporation of pN-Phe.
Fig. 6: Integration of the pN-Phe biosynthesis pathway with orthogonal MjTyrRS/tRNA for de novo biosynthesis and incorporation.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are contained in the published article (and its Supplementary Information) and are publicly accessible via cited repositories or are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Wu, N., Deiters, A., Cropp, T. A., King, D. & Schultz, P. G. A genetically encoded photocaged amino acid. J. Am. Chem. Soc. 126, 14306–14307 (2004).

    CAS  PubMed  Google Scholar 

  2. Neumann, H., Hazen, J. L., Weinstein, J., Mehl, R. A. & Chin, J. W. Genetically encoding protein oxidative damage. J. Am. Chem. Soc. 130, 4028–4033 (2008).

    CAS  PubMed  Google Scholar 

  3. Tsao, M. L., Summerer, D., Ryu, Y. & Schultz, P. G. The genetic incorporation of a distance probe into proteins in Escherichia coli. J. Am. Chem. Soc. 128, 4572–4573 (2006).

    CAS  PubMed  Google Scholar 

  4. Jackson, J. C., Duffy, S. P., Hess, K. R. & Mehl, R. A. Improving nature’s enzyme active site with genetically encoded unnatural amino acids. J. Am. Chem. Soc. 128, 11124–11127 (2006).

    CAS  PubMed  Google Scholar 

  5. Grünewald, J. et al. Immunochemical termination of self-tolerance. Proc. Natl Acad. Sci. USA 105, 11276–11280 (2008).

    PubMed  PubMed Central  Google Scholar 

  6. Grünewald, J. et al. Mechanistic studies of the immunochemical termination of self-tolerance with unnatural amino acids. Proc. Natl Acad. Sci. USA 106, 4337–4342 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. Gauba, V. et al. Loss of CD4 T-cell-dependent tolerance to proteins with modified amino acids. Proc. Natl Acad. Sci. USA 108, 12821–12826 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shorter, J. PATAI’S Chemistry of Functional Groups (John Wiley & Sons, 2009). https://doi.org/10.1002/9780470682531.pat0081

  9. Tian, H. et al. Nitrated T helper cell epitopes enhance the immunogenicity of HER2 vaccine and induce anti-tumor immunity. Cancer Lett. 430, 79–87 (2018).

    CAS  PubMed  Google Scholar 

  10. Tian, H. et al. PDL1-targeted vaccine exhibits potent antitumor activity by simultaneously blocking PD1/PDL1 pathway and activating PDL1-specific immune responses. Cancer Lett. 476, 170–182 (2020).

    CAS  PubMed  Google Scholar 

  11. Li, F. et al. A new vaccine targeting RANKL, prepared by incorporation of an unnatural amino acid into RANKL, prevents OVX-induced bone loss in mice. Biochem. Biophys. Res. Commun. 499, 648–654 (2018).

    CAS  PubMed  Google Scholar 

  12. Völler, J. S. & Budisa, N. Coupling genetic code expansion and metabolic engineering for synthetic cells. Curr. Opin. Biotechnol. 48, 1–7 (2017).

    PubMed  Google Scholar 

  13. Dickey, R. M., Forti, A. M. & Kunjapur, A. M. Advances in engineering microbial biosynthesis of aromatic compounds and related compounds. Bioresour. Bioprocess. 8, 91 (2021).

    Google Scholar 

  14. Ding, C., Ma, J., Dong, Q. & Liu, Q. Live bacterial vaccine vector and delivery strategies of heterologous antigen: a review. Immunol. Lett. 197, 70–77 (2018).

    CAS  PubMed  Google Scholar 

  15. van Bloois, E., Winter, R. T., Kolmar, H. & Fraaije, M. W. Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol. 29, 79–86 (2011).

    PubMed  Google Scholar 

  16. Wang, S. et al. Salmonella vaccine vectors displaying delayed antigen synthesis in vivo to enhance immunogenicity. Infect. Immun. 78, 3969–3980 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mehl, R. A. et al. Generation of a bacterium with a 21 amino acid genetic code. J. Am. Chem. Soc. 125, 935–939 (2003).

    CAS  PubMed  Google Scholar 

  18. Chen, Y. et al. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat. Commun. 13, 5434 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, S., Sung, B. H., Kim, S. C. & Lee, H. S. Genetic incorporation of l -dihydroxyphenylalanine (DOPA) biosynthesized by a tyrosine phenol-lyase. Chem. Commun. 54, 3002–3005 (2018).

    CAS  Google Scholar 

  20. Zuo, R. & Ding, Y. Direct aromatic nitration system for synthesis of nitrotryptophans in Escherichia coli. ACS Synth. Biol. 8, 857–865 (2019).

    CAS  PubMed  Google Scholar 

  21. Chen, Y. et al. Creation of bacterial cells with 5-hydroxytryptophan as a 21st amino acid building block. Chem 6, 2717–2727 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Marchand, J. A. et al. Discovery of a pathway for terminal-alkyne amino acid biosynthesis. Nature 567, 420–424 (2019).

    CAS  PubMed  Google Scholar 

  23. Waldman, A. J., Ng, T. L., Wang, P. & Balskus, E. P. Heteroatom–heteroatom bond formation in natural product biosynthesis. Chem. Rev. 117, 5784–5863 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Masuo, S., Zhou, S., Kaneko, T. & Takaya, N. Bacterial fermentation platform for producing artificial aromatic amines. Sci. Rep. 6, 25764 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, Y. et al. A noncanonical amino acid-based relay system for site-specific protein labeling. Chem. Commun. 54, 7187–7190 (2018).

    CAS  Google Scholar 

  26. Schaffer, J. E., Reck, M. R., Prasad, N. K. & Wencewicz, T. A. β-Lactone formation during product release from a nonribosomal peptide synthetase. Nat. Chem. Biol. 13, 737–744 (2017).

    CAS  PubMed  Google Scholar 

  27. Scott, T. A., Heine, D., Qin, Z. & Wilkinson, B. An l-threonine transaldolase is required for l-threo-β-hydroxy-α-amino acid assembly during obafluorin biosynthesis. Nat. Commun. 8, 15935 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chanco, E., Choi, Y. S., Sun, N., Vu, M. & Zhao, H. Characterization of the N-oxygenase AurF from Streptomyces thioletus. Bioorg. Med. Chem. 22, 5569–5577 (2014).

    CAS  PubMed  Google Scholar 

  29. Lu, H., Chanco, E. & Zhao, H. CmlI is an N-oxygenase in the biosynthesis of chloramphenicol. Tetrahedron 68, 7651–7654 (2012).

    CAS  Google Scholar 

  30. Finnigan, W., Hepworth, L. J., Flitsch, S. L. & Turner, N. J. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat. Catal. 4, 98–104 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hadadi, N., Hafner, J., Shajkofci, A., Zisaki, A. & Hatzimanikatis, V. ATLAS of biochemistry: a repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies. ACS Synth. Biol. 5, 1155–1166 (2016).

    CAS  PubMed  Google Scholar 

  32. Rau, J. & Stolz, A. Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases. Appl. Environ. Microbiol. 69, 3448–3455 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Onuffer, J. J., Ton, B. T., Klement, I. & Kirsch, J. F. The use of natural and unnatural amino acid substrates to define the substrate specificity differences of Escherichia coli aspartate and tyrosine aminotransferases. Protein Sci. 4, 1743–1749 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kunjapur, A. M., Tarasova, Y. & Prather, K. L. J. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. J. Am. Chem. Soc. 136, 11644–11654 (2014).

    CAS  PubMed  Google Scholar 

  35. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Seong Choi, Y., Zhang, H., Brunzelle, J. S., Nair, S. K. & Zhao, H. In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis. Proc. Natl Acad. Sci. USA 105, 6858–6863 (2008).

    Google Scholar 

  38. Young, D. D. et al. An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry 50, 1894–1900 (2011).

    CAS  PubMed  Google Scholar 

  39. Kunjapur, A. M. et al. Engineering posttranslational proofreading to discriminate nonstandard amino acids. Proc. Natl Acad. Sci. USA 115, 619–624 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Blizzard, R. J. et al. Ideal bioorthogonal reactions using a site-specifically encoded tetrazine amino acid. J. Am. Chem. Soc. 137, 10044–10047 (2015).

    CAS  PubMed  Google Scholar 

  41. Wang, L., Brock, A. & Schultz, P. G. Adding l-3-(2-naphthyl)alanine to the genetic code of E. coli. J. Am. Chem. Soc. 124, 1836–1837 (2002).

    CAS  PubMed  Google Scholar 

  42. Wang, L., Zhang, Z., Brock, A. & Schultz, P. G. Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl Acad. Sci. USA 100, 56–61 (2003).

    CAS  PubMed  Google Scholar 

  43. Wörsdörfer, B. et al. Function of the diiron cluster of Escherichia coli class Ia ribonucleotide reductase in proton-coupled electron transfer. J. Am. Chem. Soc. 135, 8585–8593 (2013).

    PubMed  Google Scholar 

  44. Cui, L. & Shearwin, K. E. Methods in Molecular Biology Vol. 1472, pp. 139–155 (Humana Press, 2017).

  45. Wannier, T. M. et al. Improved bacterial recombineering by parallelized protein discovery. Proc. Natl Acad. Sci. USA 117, 13689–13698 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kunjapur, A. M., Hyun, J. C. & Prather, K. L. J. Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway. Micro. Cell Fact. 15, 61 (2016).

    Google Scholar 

  47. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    CAS  PubMed  Google Scholar 

  48. Guo, Y. Y. et al. Molecular mechanism of azoxy bond formation for azoxymycins biosynthesis. Nat. Commun. 10, 4420 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Gerlt, J. A. et al. Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kretsch, A. et al. Discovery of (dihydro)pyrazine N-oxides via genome mining in Pseudomonas. Org. Lett. 20, 4791–4795 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Platter, E., Lawson, M., Marsh, C. & Sazinsky, M. H. Characterization of a non-ribosomal peptide synthetase-associated diiron arylamine N-oxygenase from Pseudomonas syringae pv. phaseolicola. Arch. Biochem. Biophys. 508, 39–45 (2011).

    CAS  PubMed  Google Scholar 

  52. Indest, K., Eberly, J. & Hancock, D. Expression and characterization of an N-oxygenase from Rhodococcus jostii RHAI. J. Gen. Appl. Microbiol. 61, 217–223 (2015).

    CAS  PubMed  Google Scholar 

  53. Cortina, N. S., Revermann, O., Krug, D. & Müller, R. Identification and characterization of the althiomycin biosynthetic gene cluster in Myxococcus xanthus DK897. ChemBioChem 12, 1411–1416 (2011).

    CAS  PubMed  Google Scholar 

  54. Jenul, C. et al. Biosynthesis of fragin is controlled by a novel quorum sensing signal. Nat. Commun. 9, 1297 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Tsutsumi, H. et al. Unprecedented cyclization catalyzed by a cytochrome P450 in benzastatin biosynthesis. J. Am. Chem. Soc. 140, 6631–6639 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Mass Spectrometry Facility at the University of Delaware for the mass spectrometry analysis that is supported by the National Institute of General Medical Sciences or the National Institutes of Health under award P20GM104316 and Y. Yu and P.N. Asare-Okai in particular for their assistance. We acknowledge support from the following funding sources: The National Science Foundation (NSF CBET-2032243, to A.M.K.), University of Delaware Start-Up Funds (to A.M.K.), the Mort Collins Foundation (to N.D.B.) and minor research support as part of the Center for Plastics Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, under award DE-SC0021166 (to A.M.K.). We are also grateful to the American Institute of Chemical Engineers for their support of this concept through the 2021 Langer Prize for Innovation and Entrepreneurial Excellence (to A.M.K.). We also thank M. Jones for valuable experimental troubleshooting suggestions for this work.

Author information

Authors and Affiliations

Authors

Contributions

A.M.K. conceived and supervised the study; N.D.B. designed and performed all experiments, analyzed data, prepared figures and wrote the manuscript; M.L. aided with molecular cloning; S.S. cloned the N-oxygenase library and confirmed expression and L.B.B. cloned the MjTyrRS variants tested in this study.

Corresponding author

Correspondence to Aditya M. Kunjapur.

Ethics declarations

Competing interests

N.D.B. and A.M.K. are co-inventors on a filed patent application related to this work that has now been transferred to a commercial entity cofounded by the authors (Nitro Biosciences). A.M.K. also serves on the Scientific Advisory Board of Wild Microbes. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Jorge Marchand and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–10 and Supplementary Figs. 1–19.

Reporting Summary

Supplementary Data

Supporting data for Supplementary Figs. 2, 10–13, 15, 16 and 18.

Source data

Source Data Fig. 2

Peak areas obtained from HPLC.

Source Data Fig. 3

Peak areas obtained from HPLC.

Source Data Fig. 4

Peak areas obtained from HPLC.

Source Data Fig. 5

Raw plate reader data.

Source Data Fig. 6

Raw plate reader data and peak areas obtained from HPLC.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, N.D., Sen, S., Brown, L.B. et al. A platform for distributed production of synthetic nitrated proteins in live bacteria. Nat Chem Biol 19, 911–920 (2023). https://doi.org/10.1038/s41589-023-01338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01338-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing