Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coulomb-mediated antibunching of an electron pair surfing on sound

Abstract

Electron flying qubits are envisioned as potential information links within a quantum computer, but also promise—like photonic approaches—to serve as self-standing quantum processing units. In contrast to their photonic counterparts, electron-quantum-optics implementations are subject to Coulomb interactions, which provide a direct route to entangle the orbital or spin degree of freedom. However, controlled interaction of flying electrons at the single-particle level has not yet been established experimentally. Here we report antibunching of a pair of single electrons that is synchronously shuttled through a circuit of coupled quantum rails by means of a surface acoustic wave. The in-flight partitioning process exhibits a reciprocal gating effect which allows us to ascribe the observed repulsion predominantly to Coulomb interaction. Our single-shot experiment marks an important milestone on the route to realize a controlled-phase gate for in-flight quantum manipulations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up.
Fig. 2: Delay-controlled sending and in-flight partitioning.
Fig. 3: Antibunching at synchronized transport.
Fig. 4: Coulomb-induced detuning and electron-pair partitioning.
Fig. 5: Barrier dependence of antibunching rate.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available online from the Zenodo repository at https://doi.org/10.5281/zenodo.7472518. Source data are provided with this paper.

References

  1. DiVincenzo, D. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article  Google Scholar 

  2. Ladd, T. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  CAS  Google Scholar 

  3. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  CAS  Google Scholar 

  4. Wright, K. et al. Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019).

    Article  CAS  Google Scholar 

  5. Zwanenburg, F. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).

    Article  CAS  Google Scholar 

  6. Hill, C. et al. A surface code quantum computer in silicon. Sci. Adv. https://doi.org/10.1126/sciadv.1500707 (2015).

  7. Vandersypen, L. et al. Interfacing spin qubits in quantum dots and donors–hot, dense, and coherent. npj Quantum Inf. https://doi.org/10.1038/s41534-017-0038-y (2017).

  8. O’Brien, J., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009).

    Article  Google Scholar 

  9. Barnes, C., Shilton, J. & Robinson, A. Quantum computation using electrons trapped by surface acoustic waves. Phys. Rev. B 62, 8410–8419 (2000).

    Article  CAS  Google Scholar 

  10. Ionicioiu, R., Amaratunga, G. & Udrea, F. Quantum computation with ballistic electrons. Int. J. Mod. Phys. B 15, 125–133 (2001).

    Article  Google Scholar 

  11. Bäuerle, C. et al. Coherent control of single electrons: a review of current progress. Rep. Prog. Phys. 81, 056503 (2018).

    Article  Google Scholar 

  12. Edlbauer, H. et al. Semiconductor-based electron flying qubits: review on recent progress accelerated by numerical modelling. EPJ Quantum Technol. https://doi.org/10.1140/epjqt/s40507-022-00139-w (2022).

  13. Dubois, J. et al. Minimal-excitation states for electron quantum optics using levitons. Nature 502, 659–663 (2013).

    Article  CAS  Google Scholar 

  14. Bocquillon, E. et al. Coherence and indistinguishability of single electrons emitted by independent sources. Science 339, 1054–1057 (2013).

    Article  CAS  Google Scholar 

  15. Jullien, T. et al. Quantum tomography of an electron. Nature 514, 603–607 (2014).

    Article  CAS  Google Scholar 

  16. Hong, C., Ou, Z. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  CAS  Google Scholar 

  17. Liu, R., Odom, B., Yamamoto, Y. & Tarucha, S. Quantum interference in electron collision. Nature 391, 263–265 (1998).

    Article  CAS  Google Scholar 

  18. Kang, K. Electronic Mach–Zehnder quantum eraser. Phys. Rev. B 75, 125326 (2007).

    Article  Google Scholar 

  19. Vyshnevyy, A., Lebedev, A., Lesovik, G. & Blatter, G. Two-particle entanglement in capacitively coupled Mach–Zehnder interferometers. Phys. Rev. B 87, 165302 (2013).

    Article  Google Scholar 

  20. Weisz, E. et al. An electronic quantum eraser. Science 344, 1363–1366 (2014).

    Article  CAS  Google Scholar 

  21. Lepage, H., Lasek, A., Arvidsson-Shukur, D. & Barnes, C. Entanglement generation via power-of-swap operations between dynamic electron-spin qubits. Phys. Rev. A 101, 022329 (2020).

    Article  CAS  Google Scholar 

  22. Jadot, B. et al. Distant spin entanglement via fast and coherent electron shuttling. Nat. Nanotechnol. 16, 570–575 (2021).

    Article  CAS  Google Scholar 

  23. Choquer, M. et al. Quantum control of optically active artificial atoms with surface acoustic waves. IEEE Trans. Quantum Eng. https://doi.org/10.1109/TQE.2022.3204928 (2022).

  24. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).

    Article  Google Scholar 

  25. Bell, J. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1, 195–200 (1964).

    Google Scholar 

  26. Hermelin, S. et al. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 477, 435–438 (2011).

    Article  CAS  Google Scholar 

  27. McNeil, R. et al. On-demand single-electron transfer between distant quantum dots. Nature 477, 439–442 (2011).

    Article  CAS  Google Scholar 

  28. Delsing, P. et al. The 2019 surface acoustic waves roadmap. J. Phys. D 52, 353001 (2019).

    Article  CAS  Google Scholar 

  29. Takada, S. et al. Sound-driven single-electron transfer in a circuit of coupled quantum rails. Nat. Commun. https://doi.org/10.1038/s41467-019-12514-w (2019).

  30. Edlbauer, H. et al. In-flight distribution of an electron within a surface acoustic wave. Appl. Phys. Lett. 119, 114004 (2021).

    Article  CAS  Google Scholar 

  31. Ito, R. et al. Coherent beam splitting of flying electrons driven by a surface acoustic wave. Phys. Rev. Lett. 126, 070501 (2021).

    Article  CAS  Google Scholar 

  32. Chatzikyriakou, E. et al. Unveiling the charge distribution of a GaAs-based nanoelectronic device: a large experimental data-set approach. Phys. Rev. Research 4, 043163 (2022).

    Article  CAS  Google Scholar 

  33. Helgers, P. et al. Flying electron spin control gates. Nat. Commun. https://doi.org/10.1038/s41467-022-32807-x (2022).

  34. Wang, J. et al. Generation of a single-cycle acoustic pulse: a scalable solution for transport in single-electron circuits. Phys. Rev. X 12, 031035 (2022).

    CAS  Google Scholar 

  35. Fletcher, J. et al. Time-resolved Coulomb collision of single electrons. Preprint at arXiv https://doi.org/10.48550/arXiv.2210.03473 (2022).

  36. Ubbelohde, N. et al. Two electrons interacting at a mesoscopic beam splitter. Preprint at arXiv https://doi.org/10.48550/arXiv.2210.03632 (2022).

  37. Birner, S. et al. nextnano: general purpose 3-D simulations. IEEE Trans. Electron Devices 54, 2137–2142 (2007).

    Article  CAS  Google Scholar 

  38. Hou, H. et al. Experimental verification of electrostatic boundary conditions in gate-patterned quantum devices. J. Phys. D 51, 244004 (2018).

    Article  Google Scholar 

  39. Sze, S. & Ng, K. Physics of Semiconductor Devices, 4 (John Wiley, 2006).

Download references

Acknowledgements

We acknowledge fruitful discussions with V. Kashcheyevs and E. Pavlovska. J.W. acknowledges the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement number 754303. A.R. acknowledges financial support from ANR-21-CMAQ-0003, France 2030, project QuantForm-UGA. T.K. and S.T. acknowledge financial support from JSPS KAKENHI grant number 20H02559. W.P., J.S. and H.-S.S. acknowledge support from Korea NRF via the SRC Center for Quantum Coherence in Condensed Matter (grant number 2016R1A5A1008184). C.B. acknowledges financial support from the French Agence Nationale de la Recherche (ANR), project QUABS ANR-21-CE47-0013-01. This project has received funding from the European Union’s H2020 research and innovation programme under grant agreement No 862683 ‘UltraFastNano’.

Author information

Authors and Affiliations

Authors

Contributions

J.W. performed the experiment with support from H.E., A.R. and S.O. and with input from T.K., N.-H.K., M.U., T.M., H.-S.S., H.S., S.T. and C.B. J.W. fabricated the sample. A.L. and A.D.W. provided the high-quality GaAs/GaAlAs heterostructure. X.W. developed the Bayesian model with support from H.E. and J.W. W.P., J.S. and H.-S.S. developed the exact diagonalization method. J.W. and H.E. wrote the manuscript with feedback from all authors. S.T. and C.B. supervised the experimental work.

Corresponding author

Correspondence to Christopher Bäuerle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary sections 1–7 and Figs. 1–7.

Supplementary Data 1

Source data and plotting code for Supplementary Fig. 1.

Supplementary Data 2

Source data and plotting code for Supplementary Fig. 2.

Supplementary Data 3

Source data and plotting code for Supplementary Fig. 4.

Supplementary Data 4

Source data and plotting code for Supplementary Fig. 5.

Supplementary Data 5

Source data and plotting code for Supplementary Fig. 6.

Source data

Source Data Fig. 2

Source data (.txt) and plotting code (python).

Source Data Fig. 3

Source data (.txt) and plotting code (python).

Source Data Fig. 4

Source data (.txt) and plotting code (python).

Source Data Fig. 5

Source data (.txt) and plotting code (python).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Edlbauer, H., Richard, A. et al. Coulomb-mediated antibunching of an electron pair surfing on sound. Nat. Nanotechnol. 18, 721–726 (2023). https://doi.org/10.1038/s41565-023-01368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01368-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing