Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ZIF-62 glass foam self-supported membranes to address CH4/N2 separations

Abstract

Membranes with ultrahigh permeance and practical selectivity could greatly decrease the cost of difficult industrial gas separations, such as CH4/N2 separation. Advanced membranes made from porous materials, such as metal–organic frameworks, can achieve a good gas separation performance, although they are typically formed on support layers or mixed with polymeric matrices, placing limitations on gas permeance. Here an amorphous glass foam, agfZIF-62, wherein a, g and f denote amorphous, glass and foam, respectively, was synthesized by a polymer-thermal-decomposition-assisted melting strategy, starting from a crystalline zeolitic imidazolate framework, ZIF-62. The thermal decomposition of incorporated low-molecular-weight polyethyleneimine evolves CO2, NH3 and H2O gases, creating a large number and variety of pores. This greatly increases pore interconnectivity but maintains the crystalline ZIF-62 ultramicropores, allowing ultrahigh gas permeance and good selectivity. A self-supported circular agfZIF-62 with a thickness of 200–330 µm and area of 8.55 cm2 was used for membrane separation. The membranes perform well, showing a CH4 permeance of 30,000–50,000 gas permeance units, approximately two orders of magnitude higher than that of other reported membranes, with good CH4/N2 selectivity (4–6).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and characterization of agfZIF-62.
Fig. 2: Formation route and mechanism of agfZIF-62.
Fig. 3: Characterization of agfZIF-62 membranes with different thicknesses.
Fig. 4: CH4/N2 separation performance of agfZIF-62 membranes.

Similar content being viewed by others

Data availability

The authors declare that all data supporting this study are available within the paper and Supplementary Information. Source data are provided with this paper.

References

  1. Brown, A. J. et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 345, 72–75 (2014).

    Article  CAS  Google Scholar 

  2. Zhang, C., Wu, B., Ma, M., Wang, Z. & Xu, Z. Ultrathin metal/covalent–organic framework membranes towards ultimate separation. Chem. Soc. Rev. 48, 3811–3841 (2019).

    Article  CAS  Google Scholar 

  3. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–438 (2016).

    Article  Google Scholar 

  4. Zhou, S. et al. Asymmetric pore windows in MOF membranes for natural gas valorization. Nature 606, 706–712 (2022).

    Article  CAS  Google Scholar 

  5. Qiao, Z. et al. Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nat. Mater. 18, 163–168 (2019).

    Article  CAS  Google Scholar 

  6. Lin, H., Wagner, E. V., Freeman, B. D., Toy, L. G. & Gupta, R. P. Plasticization-enhanced hydrogen purification using polymeric membranes. Science 311, 639–642 (2006).

    Article  CAS  Google Scholar 

  7. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, 1138–1148 (2017).

    Article  Google Scholar 

  8. Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    Article  CAS  Google Scholar 

  9. Ma, X. et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 361, 1008–1011 (2018).

    Article  CAS  Google Scholar 

  10. Knebel, A. et al. Defibrillation of soft porous metal-organic frameworks with electric fields. Science 358, 347–351 (2017).

    Article  CAS  Google Scholar 

  11. Liu, G. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 17, 283–289 (2018).

    Article  CAS  Google Scholar 

  12. Boyd, P. G. et al. Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature 576, 253–256 (2019).

    Article  CAS  Google Scholar 

  13. Zhao, S. et al. Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nat. Mater. 20, 1551–1558 (2021).

    Article  CAS  Google Scholar 

  14. Jeon, M. Y. et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543, 690–694 (2017).

    Article  CAS  Google Scholar 

  15. Kuznicki, S. M. et al. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 412, 720–724 (2001).

    Article  CAS  Google Scholar 

  16. Rose, I. et al. Polymer ultrapermeability from the inefficient packing of 2D chains. Nat. Mater. 16, 932–937 (2017).

    Article  CAS  Google Scholar 

  17. Baran, M. J. et al. Diversity-oriented synthesis of polymer membranes with ion solvation cages. Nature 592, 225–231 (2021).

    Article  CAS  Google Scholar 

  18. Lai, H. W. H. et al. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations. Science 375, 1390–1392 (2022).

    Article  CAS  Google Scholar 

  19. Marius, S. et al. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes. Science 376, 90–94 (2022).

    Article  Google Scholar 

  20. Adil, K. et al. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 46, 3402–3430 (2017).

    Article  CAS  Google Scholar 

  21. Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  Google Scholar 

  22. Ding, M., Flaig, R. W., Jiang, H.-L. & Yaghi, O. M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 48, 2783–2828 (2019).

    Article  CAS  Google Scholar 

  23. Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    Article  CAS  Google Scholar 

  24. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  25. Lin, J. Y. S. Molecular sieves for gas separation. Science 353, 121–122 (2016).

    Article  CAS  Google Scholar 

  26. Livingston, A. & Baker, R. Membranes from academia to industry. Nat. Mater. 16, 280–282 (2017).

    Article  Google Scholar 

  27. Merkel, T. C., Lin, H., Wei, X. & Baker, R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 359, 126–139 (2010).

    Article  CAS  Google Scholar 

  28. Al-Maythalony, B. A. et al. Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. J. Am. Chem. Soc. 137, 1754–1757 (2015).

    Article  CAS  Google Scholar 

  29. Gaillac, R. et al. Liquid metal–organic frameworks. Nat. Mater. 16, 1149–1154 (2017).

    Article  CAS  Google Scholar 

  30. Widmer, R. N. et al. Pressure promoted low-temperature melting of metal–organic frameworks. Nat. Mater. 18, 370–376 (2019).

    Article  CAS  Google Scholar 

  31. Frentzel-Beyme, L., Kloss, M., Kolodzeiski, P., Pallach, R. & Henke, S. Meltable mixed-linker zeolitic imidazolate frameworks and their microporous glasses: from melting point engineering to selective hydrocarbon sorption. J. Am. Chem. Soc. 141, 12362–12371 (2019).

    Article  CAS  Google Scholar 

  32. Hou, J. et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science 374, 621–625 (2021).

    Article  CAS  Google Scholar 

  33. Wang, Y. et al. A MOF glass membrane for gas separation. Angew. Chem. Int. Ed. 59, 4365–4369 (2020).

    Article  CAS  Google Scholar 

  34. Li, J. et al. Coordination polymer glasses with lava and healing ability for high-performance gas sieving. Angew. Chem. Int. Ed. 133, 21474–21479 (2021).

    Article  Google Scholar 

  35. Yang, S. et al. Robust bifunctional compressed carbon foam for highly effective oil/water emulsion separation. ACS Appl. Mater. Interfaces 12, 44952–44960 (2020).

    Article  CAS  Google Scholar 

  36. Li, W. et al. Covalent organic polymer nanoparticle-supported monolithic foams for separation of nitrotoluene isomers. ACS Appl. Nano Mater. 4, 10864–10876 (2021).

    Article  CAS  Google Scholar 

  37. Tan, C., Lee, M. C., Arshadi, M., Azizi, M. & Abbaspourrad, A. A spiderweb-like metal–organic framework multifunctional foam. Angew. Chem. Int. Ed. 59, 9506–9513 (2020).

    Article  CAS  Google Scholar 

  38. Cui, Z. et al. Preparation of 3-D porous PVDF/TPU composite foam with superoleophilic/hydrophobicity for the efficient separation of oils and organics from water. J. Membr. Sci. 56, 12506–12523 (2021).

    CAS  Google Scholar 

  39. Longley, L. et al. Metal-organic framework and inorganic glass composites. Nat. Commun. 11, 5800 (2020).

    Article  CAS  Google Scholar 

  40. Li, S. et al. A new route to porous metal–organic framework crystal–glass composites. Chem. Sci. 11, 9910–9918 (2020).

    Article  CAS  Google Scholar 

  41. Stepniewska, M., Stergaard, M. B., Zhou, C. & Yue, Y. Towards large-size bulk ZIF-62 glasses via optimizing the melting conditions. J. Non Cryst. Solids 530, 119806 (2020).

    Article  CAS  Google Scholar 

  42. Thorne, M. F., Gómez, M. L. R., Bumstead, A. M., Li, S. & Bennett, T. D. Mechanochemical synthesis of mixed metal, mixed linker, glass-forming metal–organic frameworks. Green Chem. 22, 2505–2512 (2020).

    Article  CAS  Google Scholar 

  43. Horike, S. & Kitagawa, S. Unveiling liquid MOFs. Nat. Mater. 16, 1054–1055 (2017).

    Article  CAS  Google Scholar 

  44. Bennett, T. D., Coudert, F. X., James, S. L. & Cooper, A. I. The changing state of porous materials. Nat. Mater. 20, 1179–1187 (2021).

    Article  CAS  Google Scholar 

  45. Horike, S., Nagarkar, S. S., Ogawa, T. & Kitagawa, S. A new dimension for coordination polymers and metal–organic frameworks: towards functional glasses and liquids. Angew. Chem. Int. Ed. 59, 6652–6654 (2020).

    Article  CAS  Google Scholar 

  46. Bennett, T. D. et al. Melt-quenched glasses of metal–organic frameworks. J. Am. Chem. Soc. 138, 3484–3492 (2016).

    Article  CAS  Google Scholar 

  47. Carreon, M. Molecular sieve membranes for N2/CH4 separation. J. Mater. Res. 33, 32–43 (2018).

    Article  CAS  Google Scholar 

  48. Niu, Z. et al. A metal–organic framework based methane nano-trap for the capture of coal-mine methane. Angew. Chem. Int. Ed. 58, 10138–10141 (2019).

    Article  CAS  Google Scholar 

  49. Yang, R. T. Adsorbents: Fundamentals and Applications (John Wiley & Sons, 2003).

  50. Mohamed, M. H. et al. Designing open metal sites in metal organic frameworks for paraffin/olefin separations. J. Am. Chem. Soc. 141, 13003–13007 (2019).

    Article  CAS  Google Scholar 

  51. Demir, H. et al. Metal−organic frameworks with metal−catecholates for O2/N2 separation. J. Phys. Chem. C 123, 12935–12946 (2019).

    Article  CAS  Google Scholar 

  52. Buonomenna, M. G. et al. Nanostructured poly(styrene-b-butadiene-b-styrene) (SBS) membranes for the separation of nitrogen from natural gas. Adv. Funct. Mater. 22, 1759–1767 (2012).

    Article  CAS  Google Scholar 

  53. Wang, S., Guo, Q., Liang, S., Li, P. & Luo, J. Preparation of Ni-MOF-74/SBS mixed matrix membranes and its application of CH4/N2 separation. Sep. Purif. Technol. 199, 206–213 (2018).

    Article  CAS  Google Scholar 

  54. Ashling, C. W. et al. Synthesis and properties of a compositional series of MIL-53(Al) metal–organic framework crystal-glass composites. J. Am. Chem. Soc. 141, 15641–15648 (2019).

    Article  CAS  Google Scholar 

  55. Collins, S. M. et al. Subwavelength spatially resolved coordination chemistry of metal–organic framework glass blends. J. Am. Chem. Soc. 140, 17862–17866 (2018).

    Article  CAS  Google Scholar 

  56. Mubashir, M. et al. Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation. J. Hazard. Mater. 415, 125639 (2021).

    Article  CAS  Google Scholar 

  57. Lin, R. et al. Interfacial engineering of a polymer–MOF composite by in situ vitrification. Chem. Commun. 56, 3609–3612 (2020).

    Article  CAS  Google Scholar 

  58. Li, S. et al. Mechanical properties and processing techniques of bulk metal–organic framework glasses. J. Am. Chem. Soc. 141, 1027–1034 (2019).

    Article  CAS  Google Scholar 

  59. Yu, X. et al. Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture. J. Membr. Sci. 362, 265–278 (2010).

    Article  CAS  Google Scholar 

  60. Guo, X., Huang, H., Liu, D. & Zhong, C. Improving particle dispersity and CO2 separation performance of amine-functionalized CAU-1 based mixed matrix membranes with polyethyleneimine-grafting modification. Chem. Eng. Sci. 189, 277–285 (2018).

    Article  CAS  Google Scholar 

  61. Zhou, C. et al. Metal-organic framework glasses with permanent accessible porosity. Nat. Commun. 9, 5042 (2018).

    Article  Google Scholar 

  62. Xia, R. et al. Probing sub-nano level molecular packing and correlated positron annihilation characteristics of ionic cross-linked chitosan membranes using positron annihilation spectroscopy. Phys. Chem. Chem. Phys. 19, 3616–3626 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (no. 2021YFB3802200) and the National Natural Science Foundation of China (grant nos. 21875161, 22038010, 22141001 and 22122810). M.D.G. is grateful for the financial support of the State Key Laboratory of Engines, Tianjin University.

Author information

Authors and Affiliations

Authors

Contributions

Z.Y., Z.Q. and S.L. fabricated the membranes and conducted the characterization. C.Z., Z.Q., M.D.G., T.D.B., Y.B., L.N.M., S.L., D.A. and Y.S. helped with experimental design, the membrane formation mechanism and data analyses. Z.Q., Z.Y., C.Z., M.D.G., T.D.B., Y.B. and L.N.M. wrote the paper.

Corresponding authors

Correspondence to Zhihua Qiao, Michael D. Guiver or Chongli Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Weishen Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43, Tables 1–10, Materials and refs. 1–22.

Source data

Source Data Fig. 1

Source data for X-ray scattering factors plotted in Fig. 1b, pair distribution functions plotted in Fig. 1c, pore size distributions plotted in Fig. 1d,e, XANES spectra plotted in Fig. 1f and EXAFS spectra plotted in Fig. 1g.

Source Data Fig. 2

Source data for DSC data plotted in Fig. 2b, TGA-MS data plotted in Fig. 2c–e, pore size distributions plotted in Fig. 2f and kinetic CO2 gas adsorption plotted in Fig. 2g.

Source Data Fig. 4

Source data for pure gas permeance and selectivity data plotted in Fig. 4a and literature survey data plotted in Fig. 4b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Belmabkhout, Y., McHugh, L.N. et al. ZIF-62 glass foam self-supported membranes to address CH4/N2 separations. Nat. Mater. 22, 888–894 (2023). https://doi.org/10.1038/s41563-023-01545-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01545-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing