Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrical switching of ferro-rotational order in nanometre-thick 1T-TaS2 crystals

Abstract

Hysteretic switching of domain states is a salient characteristic of all ferroic materials and the foundation for their multifunctional applications. Ferro-rotational order is emerging as a type of ferroic order that features structural rotations, but control over state switching remains elusive due to its invariance under both time reversal and spatial inversion. Here we demonstrate electrical switching of ferro-rotational domain states in the charge-density-wave phases of nanometre-thick 1T-TaS2 crystals. Cooling from the high-symmetry phase to the ferro-rotational phase under an external electric field induces domain state switching and domain wall formation, which is realized in a simple two-terminal configuration using a volt-scale bias. Although the electric field does not couple with the order due to symmetry mismatch, it drives domain wall propagation to give rise to reversible, durable and non-volatile isothermal state switching at room temperature. These results offer a route to the manipulation of ferro-rotational order and its nanoelectronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ferro-rotational order in 1T-TaS2 and its helicity-resolved Raman response.
Fig. 2: Electrical switching of ferro-rotational order via thermal cycling involving the ICCDW phase.
Fig. 3: Isothermal electrical switching of ferro-rotational order in the NCCDW phase.
Fig. 4: Electrical transport signature of the state switching and electrical switching mechanism.

Similar content being viewed by others

Data availability

Additional data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Wadhawan, V. Introduction to Ferroic Materials 1st edn (CRC, 2000).

  2. Cheong, S.-W., Talbayev, D., Kiryukhin, V. & Saxena, A. Broken symmetries, non-reciprocity, and multiferroicity. npj Quant. Mater. 3, 19 (2018).

    Article  Google Scholar 

  3. Van Aken, B. B., Rivera, J.-P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).

    Article  Google Scholar 

  4. Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008).

    Article  Google Scholar 

  5. Zimmermann, A. S., Meier, D. & Fiebig, M. Ferroic nature of magnetic toroidal order. Nat. Commun. 5, 4796 (2014).

    Article  CAS  Google Scholar 

  6. Hlinka, J., Privratska, J., Ondrejkovic, P. & Janovec, V. Symmetry guide to ferroaxial transitions. Phys. Rev. Lett. 116, 177602 (2016).

    Article  CAS  Google Scholar 

  7. Fiebig, M. Order! order!! Nat. Phys. 16, 9–10 (2020).

    Article  Google Scholar 

  8. Gopalan, V. & Litvin, D. B. Rotation-reversal symmetries in crystals and handed structures. Nat. Mater. 10, 376–381 (2011).

    Article  CAS  Google Scholar 

  9. Johnson, R. D. et al. Cu3Nb2O8: a multiferroic with chiral coupling to the crystal structure. Phys. Rev. Lett. 107, 137205 (2011).

    Article  CAS  Google Scholar 

  10. Johnson, R. D. et al. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108, 067201 (2012).

    Article  CAS  Google Scholar 

  11. Jin, W. et al. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2020).

    Article  CAS  Google Scholar 

  12. Luo, X. et al. Ultrafast modulations and detection of a ferro-rotational charge density wave using time-resolved electric quadrupole second harmonic generation. Phys. Rev. Lett. 127, 126401 (2021).

    Article  CAS  Google Scholar 

  13. Hayashida, T. et al. Visualization of ferroaxial domains in an order–disorder type ferroaxial crystal. Nat. Commun. 11, 4582 (2020).

    Article  CAS  Google Scholar 

  14. Hayashida, T. et al. Phase transition and domain formation in ferroaxial crystals. Phys. Rev. Mater. 5, 124409 (2021).

    Article  CAS  Google Scholar 

  15. Cheong, S.-W., Lim, S., Du, K. & Huang, F.-T. Permutable SOS (symmetry operational similarity). npj Quant. Mater. 6, 58 (2021).

    Article  Google Scholar 

  16. Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article  CAS  Google Scholar 

  17. Damodaran, A. R. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017).

    Article  CAS  Google Scholar 

  18. Fichera, B. T. et al. Second harmonic generation as a probe of broken mirror symmetry. Phys. Rev. B 101, 241106 (2020).

    Article  CAS  Google Scholar 

  19. Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008).

    Article  CAS  Google Scholar 

  20. Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  CAS  Google Scholar 

  21. Yoshida, M. et al. Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2. Sci. Rep. 4, 7302 (2014).

    Article  CAS  Google Scholar 

  22. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

    Article  CAS  Google Scholar 

  23. Yoshida, M., Suzuki, R., Zhang, Y., Nakano, M. & Iwasa, Y. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1, e1500606 (2015).

    Article  Google Scholar 

  24. Cho, D. et al. Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2. Nat. Commun. 7, 10453 (2016).

    Article  CAS  Google Scholar 

  25. Ma, L. et al. A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2. Nat. Commun. 7, 10956 (2016).

    Article  CAS  Google Scholar 

  26. Vaskivskyi, I. et al. Fast electronic resistance switching involving hidden charge density wave states. Nat. Commun. 7, 11442 (2016).

    Article  CAS  Google Scholar 

  27. Qiao, S. et al. Mottness collapse in 1T-TaS2−xSex transition-metal dichalcogenide: an interplay between localized and itinerant orbitals. Phys. Rev. X 7, 041054 (2017).

    Google Scholar 

  28. Fazekas, P. & Tosatti, E. Charge carrier localization in pure and doped 1T-TaS2. Physica B+C 99, 183–187 (1980).

    Article  CAS  Google Scholar 

  29. Wilson, J., Salvo, F. D. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    Article  CAS  Google Scholar 

  30. Thomson, R. E., Burk, B., Zettl, A. & Clarke, J. Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS2. Phys. Rev. B 49, 16899–16916 (1994).

    Article  CAS  Google Scholar 

  31. Zong, A. et al. Ultrafast manipulation of mirror domain walls in a charge density wave. Sci. Adv. 4, eaau5501 (2018).

    Article  CAS  Google Scholar 

  32. Ishioka, J. et al. Chiral charge-density waves. Phys. Rev. Lett. 105, 176401 (2010).

    Article  CAS  Google Scholar 

  33. Xu, S.-Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).

    Article  CAS  Google Scholar 

  34. Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    Article  CAS  Google Scholar 

  35. Sung, S. H. et al. Two-dimensional charge order stabilized in clean polytype heterostructures. Nat. Commun. 13, 413 (2022).

    Article  CAS  Google Scholar 

  36. Yang, H. F. et al. Visualization of chiral electronic structure and anomalous optical response in a material with chiral charge density waves. Phys. Rev. Lett. 129, 156401 (2022).

    Article  CAS  Google Scholar 

  37. Song, X. et al. Atomic-scale visualization of chiral charge density wave superlattices and their reversible switching. Nat. Commun. 13, 1843 (2022).

    Article  CAS  Google Scholar 

  38. Wu, X. L. & Lieber, C. M. Hexagonal domain-like charge density wave phase of TaS2 determined by scanning tunneling microscopy. Science 243, 1703–1705 (1989).

    Article  CAS  Google Scholar 

  39. Spijkerman, A., de Boer, J. L., Meetsma, A., Wiegers, G. A. & van Smaalen, S. X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS2 in (3 + 2)-dimensional superspace. Phys. Rev. B 56, 13757–13767 (1997).

    Article  CAS  Google Scholar 

  40. Park, J. W., Cho, G. Y., Lee, J. & Yeom, H. W. Emergent honeycomb network of topological excitations in correlated charge density wave. Nat. Commun. 10, 4038 (2019).

    Article  Google Scholar 

  41. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    Article  CAS  Google Scholar 

  42. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article  CAS  Google Scholar 

  43. McGilly, L. J., Yudin, P., Feigl, L., Tagantsev, A. K. & Setter, N. Controlling domain wall motion in ferroelectric thin films. Nat. Nanotechnol. 10, 145–150 (2015).

    Article  CAS  Google Scholar 

  44. Cho, D. et al. Correlated electronic states at domain walls of a Mott-charge-density-wave insulator 1T-TaS2. Nat. Commun. 8, 392 (2017).

    Article  Google Scholar 

  45. Skolimowski, J., Gerasimenko, Y. & Žitko, R. Mottness collapse without metallization in the domain wall of the triangular-lattice Mott insulator 1T-TaS2. Phys. Rev. Lett. 122, 036802 (2019).

    Article  CAS  Google Scholar 

  46. Park, J. W., Lee, J. & Yeom, H. W. Zoology of domain walls in quasi-2D correlated charge density wave of 1T-TaS2. npj Quant. Mater. 6, 32 (2021).

    Article  CAS  Google Scholar 

  47. Ritschel, T. et al. Orbital textures and charge density waves in transition metal dichalcogenides. Nat. Phys. 11, 328–331 (2015).

    Article  CAS  Google Scholar 

  48. Lee, S.-H., Goh, J. S. & Cho, D. Origin of the insulating phase and first-order metal–insulator transition in 1T-TaS2. Phys. Rev. Lett. 122, 106404 (2019).

    Article  CAS  Google Scholar 

  49. Butler, C. J., Yoshida, M., Hanaguri, T. & Iwasa, Y. Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2. Nat. Commun. 11, 2477 (2020).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Yu and C. Wang for assistance with the atomic force microscopy measurements. This work was supported by the National Key Research and Development Program of China (grant numbers 2018YFA0307000, 2017YFA0303201 and 2021YFA1400400), the National Natural Science Foundation of China (grant numbers 11774151, 12225407, 12204160 and 12074174, and A3 Foresight Program 51861145201) and the Fundamental Research Funds for the Central Universities (grant number 0204-14380212). K.W. and T.T. acknowledge support from JSPS KAKENHI (grant numbers 19H05790, 20H00354 and 21H05233) and A3 Foresight by JSPS. B.Y. acknowledges the financial support by the European Research Council (ERC Consolidator Grant ‘NonlinearTopo’, number 815869).

Author information

Authors and Affiliations

Authors

Contributions

X.X. conceived the project. G.L. and K.H. performed the measurements. T.Q. and D.L. fabricated the devices. Z.M., Z.H. and J.W. grew the TaS2 crystals. K.W. and T.T. grew the h-BN crystals. G.L. and X.X. analysed the experimental data. Y.L. and B.Y. performed the DFT calculations. W.T., J.X. and L.G. performed atomic force microscopy measurements. X.X., B.Y., G.L. and J.-M.L. interpreted the results. X.X. and B.Y. co-wrote the paper, with comments from all authors.

Corresponding authors

Correspondence to Binghai Yan or Xiaoxiang Xi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Wencan Jin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4 and Figs. 1–14.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Qiu, T., He, K. et al. Electrical switching of ferro-rotational order in nanometre-thick 1T-TaS2 crystals. Nat. Nanotechnol. 18, 854–860 (2023). https://doi.org/10.1038/s41565-023-01403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01403-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing